CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Multilayer transition in a spin-1 Blume–Capel model with RKKY interaction and quantum transverse anisotropy |
N. Tahiri, H. Ez-Zahraouy,† and A. Benyoussef |
Computational Physics Group, LMPHE, Departement de Physique, Faculte des Sciences, Universite Mohammed V-Agdal, B.P. 1014, Rabat, Morocco |
|
|
Abstract Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume–Capel model of a system formed by two magnetic multi-layer materials, of different thicknesses, separated by a non-magnetic spacer of thickness M. It is found that the multilayer magnetic order--disorder transition temperature depends strongly on the value of the transverse anisotropy. The multilayer transition temperature decreases when increasing the transverse anisotropy. Furthermore, there exists a critical quantum transverse anisotropy ΔxL beyond which the separate transitions occur in the two magnetic layers. The critical transverse anisotropy ΔxL decreases (increases) on increasing the non-magnetic spacer of thickness M (on increasing the crystal field), and ΔxL undergoes oscillations as a function of the Fermi level.
|
Received: 07 May 2010
Revised: 20 July 2010
Accepted manuscript online:
|
PACS:
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
75.10.Dg
|
(Crystal-field theory and spin Hamiltonians)
|
|
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Cite this article:
N. Tahiri, H. Ez-Zahraouy, and A. Benyoussef Multilayer transition in a spin-1 Blume–Capel model with RKKY interaction and quantum transverse anisotropy 2011 Chin. Phys. B 20 017501
|
[1] |
Kanno I, Hayashi S, Takayama R and Hirao T 1996 Appl. Phys. Lett. 68 382
|
[2] |
Erbil A, Kim Y and Gerhardt R A 1996 Phys. Rev. Lett. 77 1628
|
[3] |
Tabata H and Kawai T 1997 Appl. Phys. Lett. 70 20
|
[4] |
Qu B D, Evstigneev M, Johnson D J and Prince R H 1998 Appl. Phys. Lett. 72 1394
|
[5] |
Park Y 1999 Solid State Commun. 112 167
|
[6] |
Tan E K, Osman J and Tilley D R 2001 Solid State Commun. 117 59
|
[7] |
Wesselinowa J M 2002 Solid State Commun. 121 489
|
[8] |
Wesselinowa J M and Trimper S 2004 Phys. Rev. B 69 024105
|
[9] |
Teng B and Sy H K 2004 Phys. Rev. B 69 104115
|
[10] |
Kaneyoshi T 2001 Physica A 293 200
|
[11] |
Kaneyoshi T 2003 Physica A 319 355
|
[12] |
de Gennes P G 1963 Solid State Commun. 1 132
|
[13] |
Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Eitenne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
|
[14] |
Parkin S S P, More N and Roche K P 1990 Phys. Rev. Lett. 64 2304
|
[15] |
Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
|
[16] |
Kasuya T 1956 Progr. Theoret. Phys. 16 45
|
[17] |
Yosida K 1957 Phys. Rev. 106 893
|
[18] |
Hinchey L L and Mills D L 1986 Phys. Rev. B 33 3329
|
[19] |
Gr"unberg P, Schreiber R, Pang Y, Brodsky M B and Sowers H 1986 Phys. Rev. Lett. 57 2442
|
[20] |
Carbone C and Alvarado S F 1987 Phys. Rev. B 36 2433
|
[21] |
Saul D M, Wortis M and Stauffer D 1974 Phys. Rev. B 9 4964
|
[22] |
Binasch G, Gr"unberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828
|
[23] |
John Q Xiao, Samuel Jiang J and Chien C L 1992 Phys. Rev. Lett. 68 3749
|
[24] |
Leong Z Y, Tan S G, Jalil M B A, Bala Kumar S and Han G C 2006 J. Magn. Magn. Mater. 310 635
|
[25] |
Benyoussef A and Ez-Zahraouy H 1994 Physica A 206 196
|
[26] |
Benyoussef A, Ez-Zahraouy H, Mahboub H and Ouazzani M J 2003 Physica A 326 220
|
[27] |
Bahmad L, Benyoussef A and Ez-Zahraouy H 2002 J. Magn. Magn. Mater. 238 115
|
[28] |
Yang X, Kuang X Y and Lu C 2006 Solid State Commun. 139 397
|
[29] |
Cherkaoui Eddeqaqi N, Saber M, El-Atri A and Kerouad M 1999 Physica A 272 144
|
[30] |
Ez-Zahraouy H 1995 Phys. Scripta 51 310
|
[31] |
Benyoussef A, Boccara N and Saber M 1986 J. Phys. C 19 1983
|
[32] |
Kaufman M and Kanner M 1990 Phys. Rev. B 42 2378
|
[33] |
Onyszkiewicz Z, Sweykowski P, Georgiev G I and Sandalski M P 1981 Acta Phys. Polon. A 59 379
|
[34] |
Benayad N, Benyoussef A and Boccara N 1985 J. Phys. C 18 1899
|
[35] |
Kaneyoshi T 1986 Phys. Rev. B 34 7866
|
[36] |
Kaneyoshi T 1987 J. Phys. Soc. Jpn. 56 933
|
[37] |
Chakraborty K G and Tucker J W 1986 Physica A 137 111
|
[38] |
Saxena V K 1978 Phys. Stat. Sol. (B) 88 K87
|
[39] |
Dickinson H and Yeomans J 1983 J. Phys. C 16 L345
|
[40] |
Tahiri N, Ez-Zahraouy H and Benyoussef A 2009 Physica A 388 3426
|
[41] |
Amigo R, del Barco E, Casas L I, Molins E, Tejada J, Rutel I B, Mommouton B, Dalal N and Brooks J 2002 Phys. Rev. B 65 172403
|
[42] |
Heu M, Yoon S W, Jeon W S, Jung D Y, Suh B J, Yoon S 2004 J. Magn. Magn. Mater. 272 E745
|
[43] |
Falk H 1970 Am. J. Phys. 38 858 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|