Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 030502    DOI: 10.1088/1674-1056/ada54a
GENERAL Prev   Next  

A kinetic description of the goods exchange market allowing transfer of agents

Rongmei Sun(孙溶镁)† and Daixin Wang(汪代薪)
School of Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China
Abstract  In order to avoid the worsening of wealth inequality, it is necessary to explore the influencing factors of wealth distribution and discuss measures to reduce wealth inequality. We investigate the wealth distribution in the goods exchange market by using the kinetic theory of rarefied gas. The trading objects are two kinds of commodities (commodities A and B) and the trading subjects are agents of two groups (dealers and speculators). We deduce the interaction rules according to the principle of utility maximization and consider the transfer of agents in the Boltzmann equation. The steady solution of the Fokker-Planck equation for a special case is obtained and the effects of trading strategy and transfer frequency on the steady distribution are analyzed in numerical experiments. The conclusions illustrate that the transfer of agents is conducive to reducing the inequality of wealth distribution.
Keywords:  kinetic model      goods exchange      Boltzmann equation      Fokker-Planck equation  
Received:  18 October 2024      Revised:  01 December 2024      Accepted manuscript online:  03 January 2025
PACS:  05.20.Dd (Kinetic theory)  
  51.10.+y (Kinetic and transport theory of gases)  
  05.20.-y (Classical statistical mechanics)  
  05.10.Gg (Stochastic analysis methods)  
Corresponding Authors:  Rongmei Sun     E-mail:  sunrongmei@smail.swufe.edu.cn

Cite this article: 

Rongmei Sun(孙溶镁) and Daixin Wang(汪代薪) A kinetic description of the goods exchange market allowing transfer of agents 2025 Chin. Phys. B 34 030502

[1] Chancel L, Piketty T, Saez E and Zucman G 2022 World Inequality Report 2022
[2] Cordier S, Pareschi L and Toscani G 2005 J. Stat. Phys. 120 253
[3] Cordier S, Pareschi L and Piatecki C 2009 J. Stat. Phys. 134 161
[4] Zhong Y, Lai S Y and Hu C H 2021 Appl. Math. Comput. 404 126231
[5] Maldarella D and Pareschi L 2012 Physica A 391 715
[6] Brugna C and Toscani G 2015 Phys. Rev. E 92 052818
[7] Bertotti M L 2010 Appl. Math. Comput. 217 752
[8] Meng J, Zhou X and Lai S Y 2024 Chin. Phys. B 33 070501
[9] ZhaoMF, Kong L T, LiuMand Lai S Y 2024 Chin. Phys. B 33 090502
[10] Pareschi L and Toscani G 2014 Interacting multiagent systems: Kinetic equations and Monte Carlo methods (OUP Oxford)
[11] Toscani G 2006 Commun. Math. Sci. 4 481
[12] Dimarco G, Toscani G and Zanella M 2022 J. Econ. Interact. Coor. 19 493
[13] Boudin L, Monaco R and Salvarani F 2010 Phys. Rev. E 81 036109
[14] Düring B, Franceschi J, Wolfram M T and Zanella M 2024 J. Nonlinear. Sci. 34 79
[15] Furioli G, Pulvirenti A, Terraneo E and Toscani G 2017 Math. Mod. Meth. Appl. Sci. 27 115
[16] Wang L L, Lai S Y and Sun R M 2022 Appl. Math. Comput. 417 126772
[17] Hu C H and Chen H J 2023 Chin. Phys. B 32 088901
[18] Paul S, Mukherjee S, and Joseph A C B K 2022 Philos. Trans. R. Soc. A 380 163
[19] Cao F and Motsch S 2023 Kinet. Relat. Mod. 16 764
[20] Toscani G, Brugna C and Demichelis S 2013 J. Stat. Phys. 151 549
[21] Brugna C and Toscani G 2018 Physica A 499 362
[22] Hu C H, Lai S Y and Lai C 2020 Physica A 549 123938
[23] Düring B and Toscani G 2008 Commun. Math. Sci. 6 1043
[24] Giovangigli F 2012 Sci. China Math. 55 285
[25] Desvillettes L, Monaco R and Salvarani F 2005 Eur. J. Mech. B 24 219
[26] Rossani A and Spiga G 1999 Physica A 272 563
[27] Dimarco G, Pareschi L, Toscani G and Zanella M 2020 Phys. Rev. E 102 022303
[28] Bernardi E, Pareschi L, Toscani G and Zanella M 2022 Entropy 24 233
[29] Bisi M 2022 Philos. Trans. R. Soc. A 380 156
[30] Bisi M and Loy N 2024 Physica D 457 133967
[31] Polyanin A D 2001 Handbook of linear partial differential equations for engineers and scientists (Chapman and hall/crc)
[1] Dynamical distribution of continuous service time model involving non-Maxwellian collision kernel and value functions
Minfang Zhao(赵敏芳), Lingting Kong(孔令婷), Miao Liu(刘淼), and Shaoyong Lai(赖绍永). Chin. Phys. B, 2024, 33(9): 090502.
[2] A kinetic description of the impact of agent competence and psychological factors on investment decision-making
Chunhua Hu(胡春华) and Hongjing Chen(陈弘婧). Chin. Phys. B, 2023, 32(8): 088901.
[3] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[4] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[5] ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2021, 30(9): 095201.
[6] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[7] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[8] Numerical simulation of metal evaporation based on the kinetic model equation and the direct simulation Monte Carlo method
Xiaoyong Lu(卢肖勇), Xiaozhang Zhang(张小章), Zhizhong Zhang(张志忠). Chin. Phys. B, 2018, 27(12): 124702.
[9] Spin-dependent balance equations in spintronics
Zheng-Chuan Wang(王正川). Chin. Phys. B, 2018, 27(1): 016701.
[10] Semi-analytical method of calculating the electrostatic interaction of colloidal solutions
Hongqing Tian(田洪庆), Zengju Lian(连增菊). Chin. Phys. B, 2017, 26(1): 017801.
[11] Unified semiclassical approach to electronic transport from diffusive to ballistic regimes
Hao Geng(耿浩), Wei-Yin Deng(邓伟胤), Yue-Jiao Ren(任月皎), Li Sheng(盛利), Ding-Yu Xing(邢定钰). Chin. Phys. B, 2016, 25(9): 097201.
[12] Transport properties of the topological Kondo insulator SmB6 under the irradiation of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏). Chin. Phys. B, 2016, 25(10): 107303.
[13] Improvements in continuum modeling for biomolecular systems
Yu Qiao(乔瑜) and Ben-Zhuo Lu(卢本卓). Chin. Phys. B, 2016, 25(1): 018705.
[14] Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations
Jin Yu(喻进). Chin. Phys. B, 2016, 25(1): 018706.
[15] Theoretical studies on sRNA-mediated regulation in bacteria
Chang Xiao-Xue (常晓雪), Xu Liu-Fang (徐留芳), Shi Hua-Lin (史华林). Chin. Phys. B, 2015, 24(12): 128703.
No Suggested Reading articles found!