Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116103    DOI: 10.1088/1674-1056/ad7fd0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of Mn element on shock response in CoCrFeNiMnx high entropy alloys

Peng Wen(闻鹏)1,†, Changxing Du(杜长星)2, Gang Tao(陶钢)1, and Guipeng Ding(丁贵鹏)3
1 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Nanjing University of Science and Technology ZiJin College, Nanjing 210023, China;
3 Jilin City Jmminco Industry Co. Ltd, Jilin 132021, China
Abstract  The effect of Mn element on shock response of CoCrFeNiMn$_{x}$ high entropy alloys (HEAs) are investigated using molecular dynamics simulations. Structural analysis shows that Mn-rich CoCrFeNiMn$_{x}$ HEA has a larger average atomic volume. The elastic properties of CoCrFeNiMn$_{x}$ HEAs under various hydrostatic pressures are studied, revealing that the elastic modulus decreases with increasing of Mn content. The shock thermodynamic parameters are quantitatively analyzed. The Mn-dependent shock Hugoniot relationship of CoCrFeNiMn$_{x}$ HEAs is obtained: $ U_{\rm s} = 1.25 + (5.21$-0.011$x)U_{\rm p}$. At relatively high shock pressure, the increase in Mn content promotes the formation of clustered BCC structures and hinders the development of dislocations. In addition, more FCC structures in Mn-rich CoCrFeNiMn$_{x}$ HEAs transform into disordered structures during spallation. Spall strength decreases with increasing Mn content. This study can provide a reference for the design and application of CoCrFeNiMn HEAs under shock loading.
Keywords:  high entropy alloys      shock response      molecular dynamics      spallation  
Received:  01 July 2024      Revised:  19 August 2024      Accepted manuscript online:  26 September 2024
PACS:  61.66.Dk (Alloys )  
  62.50.Ef (Shock wave effects in solids and liquids)  
  02.70.Ns (Molecular dynamics and particle methods)  
  81.40.Np (Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11802139).
Corresponding Authors:  Peng Wen     E-mail:  wenpeng@njust.edu.cn

Cite this article: 

Peng Wen(闻鹏), Changxing Du(杜长星), Gang Tao(陶钢), and Guipeng Ding(丁贵鹏) Effect of Mn element on shock response in CoCrFeNiMnx high entropy alloys 2024 Chin. Phys. B 33 116103

[1] Cantor B, Chang I T H, Knight P and Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213
[2] Miracle D B and Senkov O N 2017 Acta Mater. 122 448
[3] Li W, Xie D, Li D, Zhang Y, Gao Y and Liaw P K 2021 Prog. Mater. Sci. 118 100777
[4] Li Z, Zhao S, Ritchie R O and Meyers M A 2019 Prog. Mater. Sci. 102 296
[5] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2014 Prog. Mater. Sci. 61 1
[6] Varvenne C, Luque A and Curtin W A 2016 Acta Mater. 118 164
[7] Wong S K, Shun T T, Chang C H and Lee C F 2018 Mater. Chem. Phys. 210 146
[8] Zhao L, Jiang L, Yang L X, Wang H, Zhang W Y, Ji G Y, Zhou X, Curtin W A, Chen X B, Liaw P K, Chen S Y and Wang H Z 2022 J. Mater. Sci. Technol. 110 269
[9] Hashimoto N, Fukushi T, Wada E and Chen W Y 2021 J. Nucl. Mater. 545 152642
[10] Chang M P, Fang T H, Zhu T Y and Lin J W 2023 Mater. Today Commun. 35 105844
[11] Gutierrez M A, Rodriguez G D, Bozzolo G and Mosca H O 2018 Comput. Mater. Sci. 148 69
[12] Huang A, Fensin S J and Meyers M A 2023 J. Mater. Res. Technol. 22 307
[13] Zhang N B, Tang Z J, Lin Z H, Zhu S Y, Cai Y, Chen S, Lu L, Zhao X J and Luo S N 2022 Mater. Sci. Eng. A 843 143069
[14] Qiao Y, Chen Y, Cao F H, Wang H Y and Dai L H 2021 Int. J. Impact Eng. 158 104008
[15] Zhao L, Zong H, Ding X and Lookman T 2021 Acta Mater. 209 116801
[16] Thürmer D and Gunkelmann N 2022 J. Appl. Phys. 131 065902
[17] Li W, Chen S, Aitken Z and Zhang Y 2023 Int. J. Plast. 168 103691
[18] Li W, Xiang M, Aitken Z H, Chen S, Xu Y, Yang X, Pei Q, Wang J, Li X, Vastola G, Gao H and Zhang Y W 2024 Int. J. Plast. 178 104010
[19] Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S and Yuan D 2022 Int. J. Mech. Sci. 226 107373
[20] Wen P and Tao G 2022 Acta Phys. Sin. 71 246101 (in Chinese)
[21] Choi W M, Jo Y H, Sohn S S, Lee S and Lee B J 2018 npj Comput. Mater. 4 1
[22] Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M and Gunkelmann N 2022 J. Alloys Compd. 895 162567
[23] Holian B L and Lomdahl P S 1998 Science 280 2085
[24] Wen P, Tao G, Spearot D E and Phillpot S R 2022 J. Appl. Phys. 131 051101
[25] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[26] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007
[27] Larsen P M, Schmidt S ø and SchiØtz J 2016 Model. Simul. Mater. Sci. Eng. 24 055007
[28] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 15012
[29] Meyers M A 1994 Dynamic behavior of materials (John Wiley & Sons) p. 116
[30] Wang X X, He A M, Zhou T T and Wang P 2021 Mech. Mater. 160 103991
[31] Kanel G I 2010 Int. J. Fract. 163 173
[32] Xie Z C, Li C, Wang H Y, Lu C and Dai L H 2021 Int. J. Plast. 139 102944
[33] Zhang Y, Zhang N, Tang Y, Cai Y, Lu L and Luo S 2024 Appl. Phys. Lett. 124 101901
[1] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[4] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[5] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[6] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[7] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[8] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[9] Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport
Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清). Chin. Phys. B, 2024, 33(5): 058701.
[10] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[11] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[12] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[13] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[14] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[15] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
No Suggested Reading articles found!