Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116103    DOI: 10.1088/1674-1056/ad7fd0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of Mn element on shock response in CoCrFeNiMnx high entropy alloys

Peng Wen(闻鹏)1,†, Changxing Du(杜长星)2, Gang Tao(陶钢)1, and Guipeng Ding(丁贵鹏)3
1 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Nanjing University of Science and Technology ZiJin College, Nanjing 210023, China;
3 Jilin City Jmminco Industry Co. Ltd, Jilin 132021, China
Abstract  The effect of Mn element on shock response of CoCrFeNiMnx high entropy alloys (HEAs) are investigated using molecular dynamics simulations. Structural analysis shows that Mn-rich CoCrFeNiMnx HEA has a larger average atomic volume. The elastic properties of CoCrFeNiMnx HEAs under various hydrostatic pressures are studied, revealing that the elastic modulus decreases with increasing of Mn content. The shock thermodynamic parameters are quantitatively analyzed. The Mn-dependent shock Hugoniot relationship of CoCrFeNiMnx HEAs is obtained: Us=1.25+(5.21-0.011x)Up. At relatively high shock pressure, the increase in Mn content promotes the formation of clustered BCC structures and hinders the development of dislocations. In addition, more FCC structures in Mn-rich CoCrFeNiMnx HEAs transform into disordered structures during spallation. Spall strength decreases with increasing Mn content. This study can provide a reference for the design and application of CoCrFeNiMn HEAs under shock loading.
Keywords:  high entropy alloys      shock response      molecular dynamics      spallation  
Received:  01 July 2024      Revised:  19 August 2024      Accepted manuscript online:  26 September 2024
PACS:  61.66.Dk (Alloys )  
  62.50.Ef (Shock wave effects in solids and liquids)  
  02.70.Ns (Molecular dynamics and particle methods)  
  81.40.Np (Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11802139).
Corresponding Authors:  Peng Wen     E-mail:  wenpeng@njust.edu.cn

Cite this article: 

Peng Wen(闻鹏), Changxing Du(杜长星), Gang Tao(陶钢), and Guipeng Ding(丁贵鹏) Effect of Mn element on shock response in CoCrFeNiMnx high entropy alloys 2024 Chin. Phys. B 33 116103

[1] Cantor B, Chang I T H, Knight P and Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213
[2] Miracle D B and Senkov O N 2017 Acta Mater. 122 448
[3] Li W, Xie D, Li D, Zhang Y, Gao Y and Liaw P K 2021 Prog. Mater. Sci. 118 100777
[4] Li Z, Zhao S, Ritchie R O and Meyers M A 2019 Prog. Mater. Sci. 102 296
[5] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2014 Prog. Mater. Sci. 61 1
[6] Varvenne C, Luque A and Curtin W A 2016 Acta Mater. 118 164
[7] Wong S K, Shun T T, Chang C H and Lee C F 2018 Mater. Chem. Phys. 210 146
[8] Zhao L, Jiang L, Yang L X, Wang H, Zhang W Y, Ji G Y, Zhou X, Curtin W A, Chen X B, Liaw P K, Chen S Y and Wang H Z 2022 J. Mater. Sci. Technol. 110 269
[9] Hashimoto N, Fukushi T, Wada E and Chen W Y 2021 J. Nucl. Mater. 545 152642
[10] Chang M P, Fang T H, Zhu T Y and Lin J W 2023 Mater. Today Commun. 35 105844
[11] Gutierrez M A, Rodriguez G D, Bozzolo G and Mosca H O 2018 Comput. Mater. Sci. 148 69
[12] Huang A, Fensin S J and Meyers M A 2023 J. Mater. Res. Technol. 22 307
[13] Zhang N B, Tang Z J, Lin Z H, Zhu S Y, Cai Y, Chen S, Lu L, Zhao X J and Luo S N 2022 Mater. Sci. Eng. A 843 143069
[14] Qiao Y, Chen Y, Cao F H, Wang H Y and Dai L H 2021 Int. J. Impact Eng. 158 104008
[15] Zhao L, Zong H, Ding X and Lookman T 2021 Acta Mater. 209 116801
[16] Thürmer D and Gunkelmann N 2022 J. Appl. Phys. 131 065902
[17] Li W, Chen S, Aitken Z and Zhang Y 2023 Int. J. Plast. 168 103691
[18] Li W, Xiang M, Aitken Z H, Chen S, Xu Y, Yang X, Pei Q, Wang J, Li X, Vastola G, Gao H and Zhang Y W 2024 Int. J. Plast. 178 104010
[19] Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S and Yuan D 2022 Int. J. Mech. Sci. 226 107373
[20] Wen P and Tao G 2022 Acta Phys. Sin. 71 246101 (in Chinese)
[21] Choi W M, Jo Y H, Sohn S S, Lee S and Lee B J 2018 npj Comput. Mater. 4 1
[22] Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M and Gunkelmann N 2022 J. Alloys Compd. 895 162567
[23] Holian B L and Lomdahl P S 1998 Science 280 2085
[24] Wen P, Tao G, Spearot D E and Phillpot S R 2022 J. Appl. Phys. 131 051101
[25] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[26] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007
[27] Larsen P M, Schmidt S ø and SchiØtz J 2016 Model. Simul. Mater. Sci. Eng. 24 055007
[28] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 15012
[29] Meyers M A 1994 Dynamic behavior of materials (John Wiley & Sons) p. 116
[30] Wang X X, He A M, Zhou T T and Wang P 2021 Mech. Mater. 160 103991
[31] Kanel G I 2010 Int. J. Fract. 163 173
[32] Xie Z C, Li C, Wang H Y, Lu C and Dai L H 2021 Int. J. Plast. 139 102944
[33] Zhang Y, Zhang N, Tang Y, Cai Y, Lu L and Luo S 2024 Appl. Phys. Lett. 124 101901
[1] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[4] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[5] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[6] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[7] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[8] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[9] Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport
Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清). Chin. Phys. B, 2024, 33(5): 058701.
[10] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[11] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[12] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[13] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[14] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[15] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
No Suggested Reading articles found!