Effect of Mn element on shock response in CoCrFeNiMnx high entropy alloys
Peng Wen(闻鹏)1,†, Changxing Du(杜长星)2, Gang Tao(陶钢)1, and Guipeng Ding(丁贵鹏)3
1 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2 Nanjing University of Science and Technology ZiJin College, Nanjing 210023, China; 3 Jilin City Jmminco Industry Co. Ltd, Jilin 132021, China
Abstract The effect of Mn element on shock response of CoCrFeNiMn high entropy alloys (HEAs) are investigated using molecular dynamics simulations. Structural analysis shows that Mn-rich CoCrFeNiMn HEA has a larger average atomic volume. The elastic properties of CoCrFeNiMn HEAs under various hydrostatic pressures are studied, revealing that the elastic modulus decreases with increasing of Mn content. The shock thermodynamic parameters are quantitatively analyzed. The Mn-dependent shock Hugoniot relationship of CoCrFeNiMn HEAs is obtained: -0.011. At relatively high shock pressure, the increase in Mn content promotes the formation of clustered BCC structures and hinders the development of dislocations. In addition, more FCC structures in Mn-rich CoCrFeNiMn HEAs transform into disordered structures during spallation. Spall strength decreases with increasing Mn content. This study can provide a reference for the design and application of CoCrFeNiMn HEAs under shock loading.
Peng Wen(闻鹏), Changxing Du(杜长星), Gang Tao(陶钢), and Guipeng Ding(丁贵鹏) Effect of Mn element on shock response in CoCrFeNiMnx high entropy alloys 2024 Chin. Phys. B 33 116103
[1] Cantor B, Chang I T H, Knight P and Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213 [2] Miracle D B and Senkov O N 2017 Acta Mater. 122 448 [3] Li W, Xie D, Li D, Zhang Y, Gao Y and Liaw P K 2021 Prog. Mater. Sci. 118 100777 [4] Li Z, Zhao S, Ritchie R O and Meyers M A 2019 Prog. Mater. Sci. 102 296 [5] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2014 Prog. Mater. Sci. 61 1 [6] Varvenne C, Luque A and Curtin W A 2016 Acta Mater. 118 164 [7] Wong S K, Shun T T, Chang C H and Lee C F 2018 Mater. Chem. Phys. 210 146 [8] Zhao L, Jiang L, Yang L X, Wang H, Zhang W Y, Ji G Y, Zhou X, Curtin W A, Chen X B, Liaw P K, Chen S Y and Wang H Z 2022 J. Mater. Sci. Technol. 110 269 [9] Hashimoto N, Fukushi T, Wada E and Chen W Y 2021 J. Nucl. Mater. 545 152642 [10] Chang M P, Fang T H, Zhu T Y and Lin J W 2023 Mater. Today Commun. 35 105844 [11] Gutierrez M A, Rodriguez G D, Bozzolo G and Mosca H O 2018 Comput. Mater. Sci. 148 69 [12] Huang A, Fensin S J and Meyers M A 2023 J. Mater. Res. Technol. 22 307 [13] Zhang N B, Tang Z J, Lin Z H, Zhu S Y, Cai Y, Chen S, Lu L, Zhao X J and Luo S N 2022 Mater. Sci. Eng. A 843 143069 [14] Qiao Y, Chen Y, Cao F H, Wang H Y and Dai L H 2021 Int. J. Impact Eng. 158 104008 [15] Zhao L, Zong H, Ding X and Lookman T 2021 Acta Mater. 209 116801 [16] Thürmer D and Gunkelmann N 2022 J. Appl. Phys. 131 065902 [17] Li W, Chen S, Aitken Z and Zhang Y 2023 Int. J. Plast. 168 103691 [18] Li W, Xiang M, Aitken Z H, Chen S, Xu Y, Yang X, Pei Q, Wang J, Li X, Vastola G, Gao H and Zhang Y W 2024 Int. J. Plast. 178 104010 [19] Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S and Yuan D 2022 Int. J. Mech. Sci. 226 107373 [20] Wen P and Tao G 2022 Acta Phys. Sin. 71 246101 (in Chinese) [21] Choi W M, Jo Y H, Sohn S S, Lee S and Lee B J 2018 npj Comput. Mater. 4 1 [22] Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M and Gunkelmann N 2022 J. Alloys Compd. 895 162567 [23] Holian B L and Lomdahl P S 1998 Science 280 2085 [24] Wen P, Tao G, Spearot D E and Phillpot S R 2022 J. Appl. Phys. 131 051101 [25] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171 [26] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007 [27] Larsen P M, Schmidt S ø and SchiØtz J 2016 Model. Simul. Mater. Sci. Eng. 24 055007 [28] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 15012 [29] Meyers M A 1994 Dynamic behavior of materials (John Wiley & Sons) p. 116 [30] Wang X X, He A M, Zhou T T and Wang P 2021 Mech. Mater. 160 103991 [31] Kanel G I 2010 Int. J. Fract. 163 173 [32] Xie Z C, Li C, Wang H Y, Lu C and Dai L H 2021 Int. J. Plast. 139 102944 [33] Zhang Y, Zhang N, Tang Y, Cai Y, Lu L and Luo S 2024 Appl. Phys. Lett. 124 101901
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.