Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110502    DOI: 10.1088/1674-1056/ad7e98
GENERAL Prev   Next  

Impacts of bus holding strategy on the performance and pollutant emissions of a two-lane mixed traffic system

Yanfeng Qiao(乔延峰)1, Ronghan Yao(姚荣涵)2,1,†, Baofeng Pan(潘宝峰)1, and Yu Xue(薛郁)3
1 School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China;
2 School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China;
3 School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Abstract  This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route, as well as the impacts on the characteristics of pollutant emissions of passenger cars. The dynamic behaviors of these two types of vehicles are described using cellular automata (CA) models under open boundary conditions. Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system. Then, we analyze the flow rate, satisfaction rate, and pollutant emission rates of passenger cars together with the performance of a mixed traffic system. The results show that the bus holding strategy can effectively alleviate bus bunching, whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars; the flow rate, satisfaction rate, and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops.
Keywords:  mixed traffic flow      bus holding strategy      cellular automata      traffic emissions  
Received:  04 June 2024      Revised:  06 September 2024      Accepted manuscript online:  24 September 2024
PACS:  05.50.+q (Lattice theory and statistics)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  64.75.-g (Phase equilibria)  
  64.70.-p (Specific phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52172314), the Natural Science Foundation of Liaoning Province, China (Grant No. 2022-MS- 150), and the Special Funding Project of Taishan Scholar Engineering.
Corresponding Authors:  Ronghan Yao     E-mail:  cyanyrh@sdut.edu.cn

Cite this article: 

Yanfeng Qiao(乔延峰), Ronghan Yao(姚荣涵), Baofeng Pan(潘宝峰), and Yu Xue(薛郁) Impacts of bus holding strategy on the performance and pollutant emissions of a two-lane mixed traffic system 2024 Chin. Phys. B 33 110502

[1] Tang T Q, Shi Y F, Wang Y P and Yu G Z 2012 Nonlinear Dyn. 70 209
[2] Huijberts H J C 2002 Physica A 308 489
[3] Nagatani T 2001 Phys. Rev. E 63 036115
[4] Huang Q X, Jia B, Qiang S J, Jiang R, Liu F and Gao Z Y 2020 IEEE Intel. Transp. sy. 13 179
[5] Qiang S J and Huang Q X 2023 Physica A 611 128455
[6] Nagel K and Schreckenberg M 1992 Journal de Physique I 2 2221
[7] Chowdhury D, Ludger S and Andreas S 2000 Phys. Rep. 329 199
[8] Du G L and Ye F F 2022 Chin. Phys. B 31 086401
[9] Kerner B S, Klenov S L and Wolf D E 2002 J. Phys. A 35 9971
[10] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A 33 L477
[11] O’loan M R E and Cates M E 1998 Phys. Rev. E 58 1404
[12] Luo Y J, Jia B, Li X G, Wang C and Gao Z Y 2012 Transport. Res. C 25 202
[13] Qiang S J and Huang Q X 2021 Physica A 570 125839
[14] Zhou W, Liu M, Liu T and Wang Y 2023 IEEE Access 11 89455
[15] Klumpenhouwer W and Wirasinghe S C 2018 Transport. Res. B 117 209
[16] Liang S D, Zhao S Z, Lu C X and Ma M G 2016 Transport. Res. B 87 33
[17] Tang C Y, Shi H D and Liu T 2023 Transport. Res. D 117 103652
[18] Gkiotsalitis K 2021 Transportmetrica A 17 492
[19] Liang S D, Ma M, He S X, Zhang H and Yuan P C 2019 Transportmetrica B 7 1175
[20] Rodriguez J, Koutsopoulos H N, Wang S H and Zhao J H 2023 Transport. Res. C 155 104308
[21] Khan Z S and Mónica M 2023 Transport. Res. A 177 103825
[22] Kaza N 2020 Energ. Policy 136 111049
[23] Stafoggia M, Faustini A, Rognoni M, Tessari R, Cadum E, Pacelli B, Pandolfi P, Miglio R, Mallone S, Vigotti M A and Serinelli M 2009 Epidemiol. Prev. 33 65
[24] Panis L I, Broekx S and Liu R H 2006 Sci. Total Environ. 371 270
[25] Ahn K, Rakha H, Trani A and Van Aerde M 2002 J Transp. Eng. 128 182
[26] Zheng T, Wang H W, Li X B and He H D 2021 Atmos. Environ. 253 118354
[27] Tang T Q, Wang T, Chen L and Shang HY 2017 Physica A 479 341
[28] Tang T Q, Yi Z Y and Lin Q F 2017 Physica A 469 200
[29] Zhang L D and Zhu W X 2015 Physica A 428 481
[30] Zhu W X and Zhang J Y 2017 Physica A 467 107
[31] Bibeka A, Songchitruksa P and Zhang Y L 2021 J. Intell. Transport S 25 281
[32] Lakouari N, Oubram O and Bassam A 2019 J. Comput. Sci. 40 101072
[33] Xue Y, Wang X, Cen B L, Zhang P and He H D 2020 Nonlinear Dyn. 102 393
[34] Qiao Y F, Xue Y, Wang X, Cen B L, Wang Y, Pan W and Zhang Y X 2021 Physica A 574 125996
[35] Pérez-Sansalvador J C, Lakouari N, Garcia-Diaz J and Pomares Hernandez S E 2020 Appl. Sci. 10 1592
[36] Qiao Y F, Xue Y, Cen B L, Zhang K, Chen D and Pan W 2024 Physica A 633 129392
[37] Wang X, Xue Y, Cen B L and Zhang P 2020 Physica A 537 122686
[38] Tian J F, Jia B, Ma SF, Zhu C Q, Jiang R and Ding Y X 2017 Transport. Sci. 51 807
[39] Grigoratos T and Giorgio M 2015 Environ. Sci. Pollut. R 22 2491
[40] Nyhan M, Sobolevsky S, Kang C, Robinson P, Corti A, Szell M, Streets D, Lu Z F, Britter R, Barrett S R and Ratti C 2016 Atmos. Environ. 140 352
[41] Astarita V, Giofrè V P, Guido G and Vitale A 2019 Energies 12 409
[42] Woodward H, Stettler M, Pavlidis D, Aristodemou E, ApSimon H and Pain 2019 Atmos. Environ. 215 116891
[43] Wang Y, Jiang Y S, Wu Y and Yao Z H 2024 Expert Syst. Appl. 235 121275
[44] Nguyen P, Diab E and Shalaby A 2019 Public Transport 11 299
[1] Effect of speed humps on instantaneous traffic emissions in a microscopic model with limited deceleration capacity
Yu-Chen Hu(胡宇晨), Qi-Lang Li(李启朗), Jun Liu(刘军), Jun-Xia Wang(王君霞), and Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2024, 33(6): 064501.
[2] Pedestrian evacuation simulation in multi-exit case: An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), and Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[3] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[4] Effects of rainy weather on traffic accidents of a freeway using cellular automata model
Ming-Bao Pang(庞明宝), Bo-Ning Ren(任泊宁). Chin. Phys. B, 2017, 26(10): 108901.
[5] Influence of bus stop with left-turn lines between two adjacent signalized intersections
Ming-Bao Pang(庞明宝), Lan-Hang Ye(叶兰杭), Ya-Nan Pei(裴亚男). Chin. Phys. B, 2016, 25(8): 088901.
[6] Pedestrian choice behavior analysis and simulation of vertical walking facilities in transfer station
Yong-Xing Li(李永行), Hong-Fei Jia(贾洪飞), Jun Li(李军), Ya-Nan Zhou(周亚楠), Zhi-Lu Yuan(原志路), Yan-Zhong Li(李延忠). Chin. Phys. B, 2016, 25(10): 108901.
[7] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[8] Study on bi-directional pedestrian movement using ant algorithms
Sibel Gokce, Ozhan Kayacan. Chin. Phys. B, 2016, 25(1): 010508.
[9] Effects of evacuation assistant's leading behavior on the evacuation efficiency: Information transmission approach
Wang Xiao-Lu (王晓璐), Guo Wei (郭玮), Zheng Xiao-Ping (郑小平). Chin. Phys. B, 2015, 24(7): 070504.
[10] Stair evacuation simulation based on cellular automataconsidering evacuees' walk preferences
Ding Ning (丁宁), Zhang Hui (张辉), Chen Tao (陈涛), Peter B. Luh. Chin. Phys. B, 2015, 24(6): 068801.
[11] A cellular automata model of traffic flow with variable probability of randomization
Zheng Wei-Fan (郑伟范), Zhang Ji-Ye (张继业). Chin. Phys. B, 2015, 24(5): 058902.
[12] A new cellular automaton for signal controlled traffic flow based on driving behaviors
Wang Yang (王扬), Chen Yan-Yan (陈艳艳). Chin. Phys. B, 2015, 24(3): 038902.
[13] Cellular automata model for traffic flow with safe driving conditions
María Elena Lárraga, Luis Alvarez-Icaza. Chin. Phys. B, 2014, 23(5): 050701.
[14] Epidemic propagation on adaptive coevolutionary networks with preferential local-world reconnecting strategy
Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平), Gong Yong-Wang (巩永旺). Chin. Phys. B, 2013, 22(4): 040205.
[15] Simulation of pedestrian evacuation based on an improved dynamic parameter model
Zhu Nuo(朱诺), Jia Bin(贾斌), Shao Chun-Fu(邵春福), and Yue Hao(岳昊) . Chin. Phys. B, 2012, 21(5): 050501.
No Suggested Reading articles found!