Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110203    DOI: 10.1088/1674-1056/ad7afa
GENERAL Prev   Next  

Stochastic modeling and analysis of Hepatitis and Tuberculosis co-infection dynamics

Sayed Murad Ali Shah1, Yufeng Nie(聂玉峰)1,†, Anwarud Din2,‡, Abdulwasea Alkhazzan1, and Bushra Younas3
1 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China;
2 Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China;
3 Department of Mathematics, University of Sialkot, P. O. Box 052, Pakistan
Abstract  Several mathematical models have been developed to investigate the dynamics of Tuberculosis (TB) and Hepatitis B virus (HBV). Numerous current models for TB, HBV, and their co-dynamics fall short in capturing the important and practical aspect of unpredictability. It is crucial to take into account a stochastic co-infection HBV-TB epidemic model since different random elements have a substantial impact on the overall dynamics of these diseases. We provide a novel stochastic co-model for TB and HBV in this study, and we establish criteria on the uniqueness and existence of a non-negative global solution. We also looked at the persistence of the infections as long its dynamics are governable by the proposed model. To verify the theoretical conclusions, numerical simulations are presented keeping in view the associated analytical results. The infections are found to finally die out and go extinct with certainty when Lévy intensities surpass the specified thresholds and the related stochastic thresholds fall below unity. The findings also demonstrate the impact of noise on the decline in the co-circulation of HBV and TB in a given population. Our results provide insights into effective intervention strategies, ultimately aiming to improve the management and control of TB and HBV co-infections.
Keywords:  Tuberculosis (TB)      Hepatitis B virus (HBV)      white noise      Lévy noise      stochastic model  
Received:  30 June 2024      Revised:  27 August 2024      Accepted manuscript online:  14 September 2024
PACS:  02.50.Ey (Stochastic processes)  
  02.50.Fz (Stochastic analysis)  
  02.50.Ga (Markov processes)  
Corresponding Authors:  Yufeng Nie, Anwarud Din     E-mail:  yfnie@nwpu.edu.cn;anwarud@mail.sysu.edu.cn

Cite this article: 

Sayed Murad Ali Shah, Yufeng Nie(聂玉峰), Anwarud Din, Abdulwasea Alkhazzan, and Bushra Younas Stochastic modeling and analysis of Hepatitis and Tuberculosis co-infection dynamics 2024 Chin. Phys. B 33 110203

[1] World Health Organization 2019 Global Tuberculosis Report Retrieved from WHO
[2] World Health Organization 2017 Global Hepatitis Report Retrieved from WHO 2017
[3] Onyebujoh P, Thirumala A K and Ndihokubwayo J B 2016 African Journal of Laboratory Medicine 5
[4] Guo B Z and Cai L M 2011 Mathematical Biosciences and Engineering 3 689
[5] Alkhazzan A, Wang J, Nie, Y, Khan H and Alzabut J 2024 Math. Meth. Appl. Sci. 1
[6] Alkhazzan A, Wang J, Nie Y, Khan H and Alzabut J 2023 Chaos, Solitons and Fractals 175 113953
[7] Din A 2021 Chaos 31 12
[8] Hosaka T, Suzuki F, Fujiyama S, Kawamura Y and Sezaki 2022 Hepatology Communications 6 36
[9] Khan T, Faiz M and Khan Z U 2024 Mathematical Techniques in Modeling 1 11
[10] Khan W A, Zarin A, Zeb A, Khan Y and Khan A 2024 Mathematical Techniques in Modeling 1 25
[11] Jiao Y, Chunhua Z and Yuhui L 2023 Chaos 9 1
[12] Din A, Yongjin L and Shah M A 2021 Journal of Systems Science and Complexity 34 1301
[13] Ain Q 2021 Journal of Mathematical Techniques in Modeling 1 52
[14] Shah A, Tahir H, Khan A and Arshad A 2024 Journal of Mathematical Techniques in Modeling 1 75
[15] Din A, Khan A and Dumitru B 2020 Chaos, Solitons and Fractals 139 110036
[16] Benedetto E 2021 Reply to the Comment on “On the general relativistic framework of the Sagnac effect”
[Eur. Phys. J. Plus (2020) 135 234] The European Physical Journal Plus 20 111
[17] Luo Y, Zeng C and Li B 2022 Europhys. Lett. 2 21002
[18] Luo Y, Zeng C and Ai B 2022 Phys. Rev. E 4 042114
[19] Alkhazzan A, Wang J, Nie Y, Khan H and Alzabut J 2024 Chaos, Solitons and Fractals 181 114631
[20] Feng F, Jiaqin W, Qingjia C, Shunshun W, Wanqian L, Li Y, Guanbin S, Lianhong P, Kang X and Chunli W 2024 Adv. Sci. 2405975
[21] Duan X, Dongsheng X, Runtian Z, Xiaotian L, Jiali S, Chao Q, Xinya S and Changsheng L 2023 Cyborg and Bionic Systems 4 0013
[22] Ji C, Jiang D and Shi N 2012 Anal. Appl. 30 755
[23] Ru L, Song Y and Jiang G P 2021 Chin. Phys. B 30 120202
[24] Hyman M and Ann E Stanley 1988 Mathematical Biosciences 90 415
[25] Din A, Amine S and Allali A 2023 Nonlinear Dyn. 111 1921
[26] Andrew O, Abbas M and Din A 2023 Mathematics and Computers in Simulation 204 302
[27] Naresh R and Tripathi A 2005 Anal. 10 275
[28] Bacaer N, Ouifki R, Pretorious C, Wood R and William B 2008 Math. Biol. 57 557
[29] Sharomi O, Podder C, Gumel A and Song B 2008 Math. Biosci. Eng. 5 145
[30] Roeger L, Feng Z and Chavez C 2009 Math. Biosci. Eng. 6 815
[31] Mao X 1997 Stochastic differential equations and their applications (Chichester: Horwood)
[32] Din A and Li Y J 2022 Chin. Phys. B 31 020202
[33] Zhao Y and Jiang D 2014 Appl. Math. Comput. 243 718
[34] Luo Y, Zeng C, Huang T and Ai B Q 2022 Phys. Rev. E 3 034208
[35] Murad A, Nie Y, Din A and Alkhazzan 2024 Mathematics 12 1645
[36] He L F, Cui Y Y, Zhang T Q, Zhang G and Song Y 2016 Chin. Phys. B 25 060501
[37] Bowong S and Kurths 2010 Mathematical Modelling of Natural Phenomena 6 96
[38] Danane J, Allali K, Hammouch Z and Nisar K 2021 Results in Physics 23 103994
[39] Mao X, Wei F and Wiriyakraikul T 2021 Comput. Appl. Math. 394 113566
[1] Dynamic properties of rumor propagation model induced by Lévy noise on social networks
Ying Jing(景颖), Youguo Wang(王友国), Qiqing Zhai(翟其清), and Xianli Sun(孙先莉). Chin. Phys. B, 2024, 33(9): 090203.
[2] Symmetric Brownian motor subjected to Lévy noise
Kao Jia(贾考), Lan Hu(胡兰), and Linru Nie(聂林如). Chin. Phys. B, 2024, 33(2): 020502.
[3] Detecting physical laws from data of stochastic dynamical systems perturbed by non-Gaussian α-stable Lévy noise
Linghongzhi Lu(陆凌弘志), Yang Li(李扬), and Xianbin Liu(刘先斌). Chin. Phys. B, 2023, 32(5): 050501.
[4] Simultaneous detection of CH4 and CO2 through dual modulation off-axis integrated cavity output spectroscopy
Yi-Xuan Liu(刘艺璇), Zhou-Bing Wang(王周兵), Xin-Xin Wei(韦欣欣), Jing-Jing Wang(王静静), Xin Meng(孟鑫), and Gui-Lin Mao(毛桂林). Chin. Phys. B, 2023, 32(10): 104209.
[5] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[6] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[7] Ratchet transport of overdamped particles in superimposed driven lattices
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果). Chin. Phys. B, 2019, 28(4): 040502.
[8] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[9] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[10] Average consensus of multi-agent systems with communication time delays and noisy links
Sun Yong-Zheng (孙永征), Li Wang (李望), Ruan Jiong (阮炯). Chin. Phys. B, 2013, 22(3): 030510.
[11] The Stochastic stability of a Logistic model with Poisson white noise
Duan Dong-Hai(段东海), Xu Wei(徐伟), Su Jun(苏军), and Zhou Bing-Chang(周丙常). Chin. Phys. B, 2011, 20(3): 030501.
[12] Consensus problems of multi-agent systems with noise perturbation
Sun Yong-Zheng (孙永征), Ruan Jiong (阮 炯). Chin. Phys. B, 2008, 17(11): 4137-4141.
[13] Coherence resonance and synchronication of Hindmarsh-Rose neurons with noise
Shi Xia (石霞), Lu Qi-Shao (陆启韶). Chin. Phys. B, 2005, 14(6): 1088-1094.
[14] Modulated stochastic multiresonance in single-mode laser system without input periodic signal
Liang Gui-Yun (梁贵云), Cao Li (曹力), Wu Da-Jin (吴大进). Chin. Phys. B, 2003, 12(10): 1105-1108.
No Suggested Reading articles found!