Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050502    DOI: 10.1088/1674-1056/ad20d9
GENERAL Prev   Next  

Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem

Jing-Xi Tian(田婧希)1, Song-Chang Jin(金松昌)2, Xiao-Qiang Zhang(张晓强)3, Shao-Wu Yang(杨绍武)1, and Dian-Xi Shi(史殿习)2,†
1 School of Computer Science, National University of Defense Technology, Changsha 410003, China;
2 Intelligent Game and Decision Laboratory (IGDL), Beijing 100091, China;
3 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract  Remote sensing images carry crucial ground information, often involving the spatial distribution and spatiotemporal changes of surface elements. To safeguard this sensitive data, image encryption technology is essential. In this paper, a novel Fibonacci sine exponential map is designed, the hyperchaotic performance of which is particularly suitable for image encryption algorithms. An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed. The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images. Moreover, the keys are processed using an elliptic curve cryptosystem, eliminating the need for an additional channel to transmit the keys, thus enhancing security. Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency, making it suitable for remote sensing image encryption tasks.
Keywords:  hyperchaotic system      elliptic curve cryptosystem (ECC)      3D synchronous scrambled diffusion      remote sensing image      unmanned aerial vehicle (UAV)  
Received:  09 November 2023      Revised:  19 January 2024      Accepted manuscript online:  22 January 2024
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  95.75.Mn (Image processing (including source extraction))  
Fund: Project supported was supported by the National Natural Science Foundation of China (Grant No. 91948303).
Corresponding Authors:  Dian-Xi Shi     E-mail:  dxshi@nudt.edu.cn

Cite this article: 

Jing-Xi Tian(田婧希), Song-Chang Jin(金松昌), Xiao-Qiang Zhang(张晓强), Shao-Wu Yang(杨绍武), and Dian-Xi Shi(史殿习) Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem 2024 Chin. Phys. B 33 050502

[1] Zhang X Q and Wang X S 2018 Appl. Sci. 8 1540
[2] Liu Z F, Li J Q, Di X Q, Man Z L and Sheng Y H 2021 Secur. Commun. Netw. 2021 1
[3] Wang X M, Li J and Yan H Y 2021 Enterp. Inf. Syst. 15 530
[4] Zhang D H, Ren L J, Shafiq M and Gu Z Q 2022 Remote Sens. 14 6371
[5] Tao Y C, Yang X L, Meng X F, Wang Y R, Yin Y K and Dong G Y 2020 Journal of Optics 22 65701
[6] Lone N P, Singh D, Stoffová V, Mishra D C, Mir U H and Kumar N 2022 Mathematics 10 3878
[7] Khoirom M S, Laiphrakpam D S and Themrichon T 2018 Optik 168 370
[8] Toughi S, Fathi M H and Sekhavat Y A 2017 Signal Process. 141 217
[9] Chowdhary C L, Patel P V, Kathrotia K J, Attique M, Perumal K and Ijaz M F 2020 Sensors 20 5162
[10] Lai Q, Hu G, Erkan U and Toktas 2022 Appl. Math. Comput. 442 127738
[11] Wang M C, Liu H J and Zhao M D 2022 Eur. Phys. J. Spec. Top. 231 3225
[12] Lv W R, Chen J X, Chai X L and Fu C 2023 Nonlinear Dyn. 111 4
[13] Wen J, Xu X M, Sun K H, Jiang Z H and Wang X 2023 Nonlinear Dyn. 111 3887
[14] Erkan U, Toktas A, Toktas F and Alenezi F 2021 Inf. Sci. 589 770
[15] Huang L L, Chai B, Xiang J H, Zhang Z F and Liu J 2023 Phys. Scr. 98 35217
[16] Gao X Y, Sun B, Cao Y H, Banerjee S and Mou J 2023 Chin. Phys. B 32 30501
[17] Chen R, Li X M, Teng L and Wang X Y 2023 Phys. Scr. 98 3
[18] Wang J, Liu L F, Xu M F and Li X J 2022 J. King Saud. Univ. Comput. Inf. Sci. 34 8425
[19] Lai Q and Liu Y 2023 Expert Syst. Appl. 223 119923
[20] Liang Q and Zhu C 2023 Opt. Laser Technol. 160 109033
[21] Briggs K 1990 Phys. Lett. A 151 27
[22] Hua Z Y, Zhou Y C, Pun C M, Chen C.L. P 2015 Inf. Sci. 297 80
[23] Hua Z Y, Jin F, Xu B X, Huang H J 2018 Signal Process. 149 148
[24] Hua Z Y and Zhou Y C 2016 Inf. Sci. 339 237
[25] Gottwald G A and Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129
[26] Wu Y, Zhang L L, Berretti S and Wan S H 2023 IEEE Trans. Ind. Inform. 19 2089
[27] Jiang L, Niu T, Xu Z Q and Xu Y Y 2015 IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8 2232
[28] Wang X Y, Liu L L and Song M P 2023 Nonlinear Dyn. 111 14537
[29] Alvarez G and Li S J 2006 Int. J. Bifurcat. Chaos 16 2129
[30] Wu W Q and Wang Q 2023 Nonlinear Dyn. 111 3831
[31] Lai Q, Yang L and Chen G R 2023 IEEE Trans. Ind. Electron. 8 1
[32] Wang X, Liu C and Jiang D 2022 Inf. Sci. 610 300
[33] Zhang X Q, Liu Z W and Yang X C 2023 Nonlinear Dyn. 111 6839
[34] Rani N, Mishra V and Sharma S R 2023 Nonlinear Dyn. 111 2869
[35] Wang X Y and Liu H P 2022 Chaos, Solitons & Fractals 164 112586
[36] Yu J W, Xie W, Zhong Z Y and Wang H 2022 Chaos, Solitons & Fractals 162 112456
[37] Liu P B, Wang X Y and Su Y N 2022 IEEE T. Circ. Syst. Vid. 33 2506
[38] Lone M A and Qureshi S 2023 Nonlinear Dyn. 111 5919
[39] Gao X Y, Mou J, Banerjee S and Zhang Y S 2023 IEEE T. Cybernetics 53 5037
[40] Lin J 1991 IEEE Trans. Inf. Theory. 37 145
[41] Zhao H G, Wang S S and Wang X Y 2022 Chaos, Solitons & Fractals 164 112742
[42] Lai Q, Wan Z Q, Zhang H and Chen G R 2023 IEEE Trans. Neural Netw. Learn Syst. 34 7824
[43] Li D H, Li J Q, Di X Q and Li B 2023 Nonlinear Dyn. 111 2917
[44] Lai Q and Chen Z J 2023 Chaos, Solitons & Fractals. 170 113341
[45] Lin H R, Wang C H, Xu C, Zhang X and Iu H H C 2023 IEEE T. Comput. Aid. D. 42 942
[46] Wu Y and Noonan J P and Agaian S 2011 Journal of Selected Areas in Telecommunications 1 31
[47] Gao X Y, Mou J, Xiong L, Sha Y W, Yan H Z and Cao Y H 2022 Nonlinear Dyn. 108 613
[1] Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability
Li-Lian Huang(黄丽莲), Yan-Hao Ma(马衍昊), and Chuang Li(李创). Chin. Phys. B, 2024, 33(1): 010503.
[2] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[3] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[4] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[5] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[6] A novel methodology for constructing a multi-wing chaotic and hyperchaotic system with a unified step function switching control
Chao-Xia Zhang(张朝霞), Si-Min Yu(禹思敏). Chin. Phys. B, 2016, 25(5): 050503.
[7] A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Yang Lu(路杨), Miao-Hui Zhang(张苗辉), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2016, 25(10): 100503.
[8] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[9] A fractional order hyperchaotic system derived from Liu system and its circuit realization
Han Qiang (韩强), Liu Chong-Xin (刘崇新), Sun Lei (孙蕾), Zhu Da-Rui (朱大锐). Chin. Phys. B, 2013, 22(2): 020502.
[10] Controlling and synchronization of a hyperchaotic system based on passive control
Zhu Da-Rui (朱大锐), Liu Chong-Xin (刘崇新), Yan Bing-Nan (燕并男). Chin. Phys. B, 2012, 21(9): 090509.
[11] Projective synchronization of hyperchaotic system via periodically intermittent control
Huang Jun-Jian (黄军建), Li Chuan-Dong (李传东), Zhang Wei (张伟), Wei Peng-Cheng (韦鹏程). Chin. Phys. B, 2012, 21(9): 090508.
[12] Forming and implementing a hyperchaotic system with rich dynamics
Liu Wen-Bo(刘文波), Wallace K. S. Tang(邓榤生), and Chen Guan-Rong(陈关荣) . Chin. Phys. B, 2011, 20(9): 090510.
[13] Impulsive synchronisation of a class of fractional-order hyperchaotic systems
Wang Xing-Yuan(王兴元), Zhang Yong-Lei(张永雷), Lin Da(林达), and Zhang Na(张娜). Chin. Phys. B, 2011, 20(3): 030506.
[14] Modified impulsive synchronization of fractional order hyperchaotic systems
Fu Jie(浮洁), Yu Miao(余淼), and Ma Tie-Dong(马铁东) . Chin. Phys. B, 2011, 20(12): 120508.
[15] Modified projective synchronization of a fractional-order hyperchaotic system with a single driving variable
Wang Xing-Yuan(王兴元) and Zhang Yong-Lei(张永雷) . Chin. Phys. B, 2011, 20(10): 100506.
No Suggested Reading articles found!