Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040306    DOI: 10.1088/1674-1056/ad1174
GENERAL Prev   Next  

Double quantum images encryption scheme based on chaotic system

She-Xiang Jiang(蒋社想)1,2, Yang Li(李杨)1,†, Jin Shi(石锦)1, and Ru Zhang(张茹)1
1 School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
2 Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science & Technology, Huainan 232001, China
Abstract  This paper explores a double quantum images representation (DNEQR) model that allows for simultaneous storage of two digital images in a quantum superposition state. Additionally, a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated, offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps. Based on the DNEQR model and the hyperchaotic system, a double quantum images encryption algorithm is proposed. Firstly, two classical plaintext images are transformed into quantum states using the DNEQR model. Then, the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences. These chaotic sequences are utilized to perform pixel value and position operations on the quantum image, resulting in changes to both pixel values and positions. Finally, the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences. The corresponding quantum circuits are also given. Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission, improves the encryption efficiency, and enhances anti-interference and anti-attack capabilities.
Keywords:  double quantum images encryption      chaotic system      pixel scrambling      XOR operation  
Received:  09 September 2023      Revised:  24 November 2023      Accepted manuscript online:  01 December 2023
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  07.05.Pj (Image processing)  
Fund: Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204), the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34), and the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301).
Corresponding Authors:  Yang Li     E-mail:  ly1000xyz@163.com

Cite this article: 

She-Xiang Jiang(蒋社想), Yang Li(李杨), Jin Shi(石锦), and Ru Zhang(张茹) Double quantum images encryption scheme based on chaotic system 2024 Chin. Phys. B 33 040306

[1] Cai J R, Gu S H and Zhang L 2018 IEEE Trans. Image Process. 27 2049
[2] Li Y C, Zhou R G, Xu R Q, Luo J and Hu W W 2020 Quantum Sci. Technol. 5 044003
[3] Guo L M, Du H W and Huang D 2021 Quantum Inf. Process. 21 20
[4] Lai Q, Liu Y and Yang L 2023 Appl. Intell. 53 22863
[5] Sharkawy N H, Afify Y M, Gad W and Badr N 2022 IEEE Access 10 63004
[6] Yao S Y, Chen L F and Zhong Y 2019 Opt. Laser Technol. 120 105703
[7] Deepak Vagish K, Rajakumaran C and Kavitha R 2020 Multimedia Tools Appl. 79 23849
[8] Shi J J, Chen S H, Chen T, Zhao T G, Tang J Q, Li Q, Yu C L and Shi H Y 2022 Quantum Inf. Process. 21 214
[9] Su Y N and Wang X Y 2023 Multimedia Tools Appl. 82 42679
[10] Wang J, Geng Y C, Han L and Liu J Q 2019 Int. J. Theor. Phys. 58 308
[11] Zhou S H 2020 IEEE Access 8 178336
[12] Liu X B, Xiao D and Liu C 2020 Quantum Inf. Process. 19 239
[13] Le P Q, Iliyasu A M, Dong F and Hirota K 2011 Quantum Inf. Process. 10 63
[14] Zhang Y, Lu K, Gao Y H and Wang M 2013 Quantum Inf. Process. 12 2833
[15] Lisnichenko M and Protasov S 2022 Quantum Mach. Intell. 5 2
[16] Li H S, Zhu Q X, Zhou R G, Song L and Yang X J 2014 Quantum Inf. Process. 13 991
[17] Jiang N, Wang J and Yue M 2015 Quantum Inf. Process. 14 4001
[18] Li H S, Song S X, Fan P, Peng H L and Liang Y 2019 Inf. Sci. 502 42
[19] Li H S, Chen X, Xia H Y, Liang Y and Zhou Z S 2018 IEEE Access 6 62396
[20] Abd-El-Atty B, Abd-El-Latif A A and Venegas-Andraca S E 2019 Quantum Inf. Process. 18 272
[21] Chen Z G, Yan Y, Pan J and Zhu H H 2022 Quantum Inf. Process. 21 175
[22] Li H S, Li C Y, Chen X and Xia H Y 2018 Int. J. Theor. Phys. 57 3745
[23] Malik A, Dhall S and Gupta S 2021 Multimedia Tools Appl. 80 7911
[24] Zhu H H, Chen X B and Yang Y X 2021 Quantum Inf. Process. 20 315
[25] Zhou R G, Wu Q, Zhang M Q and Shen C Y 2013 Int. J. Theor. Phys. 52 1802
[26] Hou C G, Liu X B and Feng S Y 2020 Mod. Phys. Lett. A 35 2050145
[27] Gao J, Wang Y N, Song Z Y and Wang S M 2023 Entropy 25 865
[28] Fan P, Hou M J, Hu W W and Xiao K 2022 Int. J. Theor. Phys. 61 260
[29] Yang Y G, Xia J, Jia X and Zhang H 2013 Quantum Inf. Process. 12 3477
[30] Gong L H, He X T, Tan R C and Zhou Z H 2018 Int. J. Theor. Phys. 57 59
[31] Li H S, Li C Y, Chen X and Xia H Y 2019 Mod. Phys. Lett. A 34 1950214
[32] Wang L, Ran Q W and Ma J 2020 Multimedia Tools Appl. 79 6661
[33] Liu X B, Xiao D and Liu C 2018 Entropy 20 867
[34] Jiang N, Dong X, Hu H, Ji Z X and Zhang W Y 2019 Int. J. Theor. Phys. 58 979
[35] Zhou R G and Li Y B 2020 Int. J. Quantum Inf. 18 2050022
[36] Wang Y, Chen L, Yu K, Gao Y and Ma Y 2022 Entropy 24 251
[37] Jiang Z Y and Liu X B 2023 Int. J. Theor. Phys. 62 22
[38] Chen X, Yu S M, Wang Q X, Guyeux C and Wang M J 2023 Multimedia Tools Appl. 82 42717
[39] Zhang J and Huo D 2019 Multimedia Tools Appl. 78 15605
[40] Hu M T, Li J Q and Di X Q 2023 Nonlinear Dyn. 111 2815
[41] Khairullah M K, Alkahtani A A, Bin Baharuddin M Z and Al-Jubari A M 2021 Electronics 10 2116
[42] Hua Z Y, Zhou Y C, Pun C M and Chen C L P 2015 Inf. Sci. 297 80
[43] Zhu H, Zhao Y and Song Y 2019 IEEE Access 7 14081
[44] Hua Z Y and Zhou Y C 2016 Inf. Sci. 339 237
[45] Tang J N, Zhang F and Ni H 2023 The Visual Computer 39 4955
[46] Pareschi F, Rovatti R and Setti G 2012 IEEE Trans. Inf. Forensics Secur. 7 491
[47] Faragallah O S, Afifi A, El-Shafai W, El-Sayed H S, Naeem E A, Alzain M A, Al-Amri J F, Soh B and El-Samie F E A 2020 IEEE Access 8 42491
[48] Liu X B, Xiao D and Liu C 2021 Quantum Inf. Process. 20 23
[49] Liu X B, Xiao D and Xiang Y P 2019 IEEE Access 7 6937
[50] Chen Z, Yan Y, Pan J and Zhu H 2022 Quantum Inf. Process. 21 175
[51] Li X Z, Chen W W and Wang Y Q 2018 Int. J. Theor. Phys. 57 2904
[52] Kaur M and Kumar V 2020 Arch. Comput. Methods Eng. 27 15
[53] Patro K A K, Kumar M P and Acharya B 2022 S=a 47 161
[54] Liu H, Zhao B and Huang L Q 2019 Multimedia Tools Appl. 78 20465
[1] Two-dimensional-lag complex logistic map with complex parameters and its encryption application
Fangfang Zhang(张芳芳), Jinbo Wu(武金波), Lei Kou(寇磊), Fengying Ma(马凤英), Liming Wu(吴黎明), and Xue Zhang(张雪). Chin. Phys. B, 2024, 33(5): 050505.
[2] Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
Jing-Xi Tian(田婧希), Song-Chang Jin(金松昌), Xiao-Qiang Zhang(张晓强), Shao-Wu Yang(杨绍武), and Dian-Xi Shi(史殿习). Chin. Phys. B, 2024, 33(5): 050502.
[3] A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧). Chin. Phys. B, 2024, 33(3): 030501.
[4] Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability
Li-Lian Huang(黄丽莲), Yan-Hao Ma(马衍昊), and Chuang Li(李创). Chin. Phys. B, 2024, 33(1): 010503.
[5] Dynamical analysis, geometric control and digital hardware implementation of a complex-valued laser system with a locally active memristor
Yi-Qun Li(李逸群), Jian Liu(刘坚), Chun-Biao Li(李春彪), Zhi-Feng Hao(郝志峰), and Xiao-Tong Zhang(张晓彤). Chin. Phys. B, 2023, 32(8): 080503.
[6] Corrigendum to “The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation andcoexisting attractors”
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2023, 32(6): 069902.
[7] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[8] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[9] Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system
Wang-Peng Huang(黄旺鹏) and Qiang Lai(赖强). Chin. Phys. B, 2023, 32(10): 100504.
[10] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[11] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[12] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[13] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[14] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[15] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
No Suggested Reading articles found!