Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020501    DOI: 10.1088/1674-1056/ad02e6
GENERAL Prev   Next  

Memory effect in time fractional Schrödinger equation

Chuanjin Zu(祖传金) and Xiangyang Yu(余向阳)
School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  A significant obstacle impeding the advancement of the time fractional Schrödinger equation lies in the challenge of determining its precise mathematical formulation. In order to address this, we undertake an exploration of the time fractional Schrödinger equation within the context of a non-Markovian environment. By leveraging a two-level atom as an illustrative case, we find that the choice to raise i to the order of the time derivative is inappropriate. In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment, the time fractional Schrödinger equation, when devoid of fractional-order operations on the imaginary unit i, emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects. Meanwhile, we also prove that it is meaningless to study the memory of time fractional Schrödinger equation with time derivative 1 < α ≤ 2. It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrödinger equation. This will be the focus of future research. Our study might provide a new perspective on the role of time fractional Schrödinger equation.
Keywords:  time fractional Schrödinger equation      memory effect      non-Markovian environment  
Received:  20 June 2023      Revised:  26 September 2023      Accepted manuscript online:  13 October 2023
PACS:  02.30.Vv (Operational calculus)  
  02.90.+p (Other topics in mathematical methods in physics)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274398).
Corresponding Authors:  Xiangyang Yu     E-mail:  cesyxy@mail.sysu.edu.cn

Cite this article: 

Chuanjin Zu(祖传金) and Xiangyang Yu(余向阳) Memory effect in time fractional Schrödinger equation 2024 Chin. Phys. B 33 020501

[1] Yuan Z G and Zhang P 2015 Chin. Phys. Lett. 32 60301
[2] Wu G C and Wu K T 2012 Chin. Phys. Lett. 29 60505
[3] Zhang Y J, Wang Z Z 2009 Acta Phys. Sin. 58 6074 (in Chinese)
[4] Yuan D Q 2016 Acta Phys. Sin. 65 180302 (in Chinese)
[5] Ouannas A, Khennaoui A A, Momani S, Pham V T and El-Khazali R 2020 Chin. Phys. B 29 50504
[6] Si T Y 2019 Chin. Phys. B 28 40501
[7] Mandelbrot B B and Van Ness J W 1968 SIAM Review 10 422
[8] Mandelbrot B B 1977 Fractals: form, chance and dimension (New York: W. H. Freeman and Company San Francisco)
[9] Guner O 2017 Commun. Theor. Phys. 68 149
[10] He S B, Wang H H and Sun K H 2022 Chin. Phys. B 31 060501
[11] Jin M X, Sun K H and He S B 2023 Chin. Phys. B 32 060501
[12] Shoaib B, Qureshi I M, Shafqatullah and Ihsanulhaq 2014 Chin. Phys. B 23 50503
[13] Aghababa M P 2012 Chin. Phys. B 21 100505
[14] Laskin N 2000 Chaos 10 780
[15] Laskin N 2000 Phys. Rev. E 62 3135
[16] Laskin N 2002 Phys. Rev. E 66 056108
[17] Naber M 2004 J. Math. Phys. 45 3339
[18] Wang S and Xu M 2007 J. Math. Phys. 48 043502
[19] Dong J and Xu M 2008 J. Math. Anal. Appl. 344 1005
[20] Bayin S S 2012 J. Math. Phys. 53 042105
[21] Hawkins E and Schwarz J M 2013 J. Math. Phys. 53 014101
[22] Lu L Z and Yu X Y 2016 Eur. Phys. J. D 70 184
[23] Laskin N 2017 Chaos, Solitons and Fractals 102 16
[24] Lu L Z and Yu X Y 2018 Ann. Phys. 392 260
[25] Zu C J, Gao Y M and Yu X Y 2021 Chaos, Solitons and Fractals 147 110930
[26] Zu C J and Yu X Y 2022 Chaos, Solitons and Fractals 157 111941
[27] Srivastava H M F 2021 Chaos 31 053130
[28] Wang R F, Xu Y and Pei B 2022 Chaos 32 123135
[29] Wei Y C 2016 Phys. Rev. E 93 066103
[30] Laskin N 2016 Phys. Rev. E 93 066104
[31] Narahari Achar B N 2013 Adv. Math. Phys. 2013 1
[32] Guo Y Q, Chen P X and Li J 2023 Chin. Phys. B 32 060302
[33] Imamoglu A, Awschalom D D and Burkard G 1999 Phys. Rev. Lett. 83 4204
[34] Breuer H P 2002 The Theory of Open Quantum Systems. (Oxford: Oxford University Press)
[35] Lu X M, Wang X and Sun C P 2009 Phys. Rev. A 82 042103
[36] Rivas A and Huelga S F 2010 Phys. Rev. Lett. 105 050403
[37] Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 108 160402
[38] Harouni M B 2020 Chin. Phys. B 29 124203
[39] Li Y L, Zeng Y B, Yao L and Xiao X 2023 Chin. Phys. B 32 010303
[40] Nakajima S 1958 Prog. Theor. Phys. 20 948
[41] Shibata F, Takahashi Y and Hashitsume N 1977 J. Stat. Phys. 17 171
[42] Odibat Z M 2010 Comput. Math. Appl. 59 1171
[43] Saxena R K, Saxena R and Kalla S L 2010 Appl. Math. Comput. 216 1412
[1] Analysis of anomalous transport with temporal fractional transport equations in a bounded domain
Kaibang Wu(吴凯邦), Jiayan Liu(刘嘉言), Shijie Liu(刘仕洁), Feng Wang(王丰), Lai Wei(魏来), Qibin Luan(栾其斌), and Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2023, 32(11): 110502.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[4] Memory effect evaluation based on transmission matrix calculation
Ming Li(李明), Long-Jie Fang(方龙杰), Lin Pang(庞霖). Chin. Phys. B, 2019, 28(7): 074207.
[5] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[6] Effect of thermo-mechanical process on structure and high temperature shape memory properties of Ti-15Ta-15Zr alloy
Xiao-Hang Zheng(郑晓航), Jie-He Sui(隋解和), Zhe-Yi Yang(杨哲一), Guo-Zhang Zhi(张治国), Wei Cai(蔡伟). Chin. Phys. B, 2017, 26(5): 056103.
[7] Discord and entanglement in non-Markovian environments at finite temperatures
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(9): 090302.
[8] Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22
Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳). Chin. Phys. B, 2016, 25(8): 087503.
[9] Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature
Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发). Chin. Phys. B, 2015, 24(8): 080304.
[10] Rise of quantum correlations in non-Markovian environments in continuous-variable systems
Liu Xin (刘辛), Wu Wei (吴薇). Chin. Phys. B, 2014, 23(7): 070303.
[11] Thermal stability and high-temperature shape memory characteristics of Ti-20Zr-10Ta alloy
Zheng Xiao-Hang (郑晓航), Sui Jie-He (隋解和), Zhang Xin (张欣), Yang Zhe-Yi (杨哲一), Cai Wei (蔡伟). Chin. Phys. B, 2014, 23(1): 018101.
[12] Effects of Cu on the martensitic transformation and magnetic properties of Mn50Ni40In10 alloy
Li Ge-Tian (李歌天), Liu Zhu-Hong (柳祝红), Meng Fan-Yan (孟凡研), Ma Xing-Qiao (马星桥), Wu Guang-Heng (吴光恒). Chin. Phys. B, 2013, 22(12): 126201.
[13] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling(李艳玲) and Fang Mao-Fa(方卯发) . Chin. Phys. B, 2011, 20(10): 100312.
[14] Protecting entanglement by detuning: in Markovian environments vs in non-Markovian environments
Huang Li-Yuan(黄利元) and Fang Mao-Fa(方卯发). Chin. Phys. B, 2010, 19(9): 090318.
[15] Einstein-Podolsky-Rosen entanglement in bad cavity case
Yuan Sui-Hong(袁绥洪) and Hu Xiang-Ming(胡响明) . Chin. Phys. B, 2010, 19(7): 074210.
No Suggested Reading articles found!