Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020502    DOI: 10.1088/1674-1056/ace8fa
GENERAL Prev   Next  

Symmetric Brownian motor subjected to Lévy noise

Kao Jia(贾考), Lan Hu(胡兰), and Linru Nie(聂林如)
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
Abstract  In the past few years, attention has mainly been focused on the symmetric Brownian motor (BM) with Gaussian noises, whose current and energy conversion efficiency are very low. Here, we investigate the operating performance of the symmetric BM subjected to Lévy noise. Through numerical simulations, it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise. Without any load, the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current. With a load, the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking. The results of this research are of great significance for opening up BM's intrinsic physical mechanism and promoting the development of nanotechnology.
Keywords:  symmetric Brownian motor      average velocity      energy conversion efficiency      Lévy noise  
Received:  21 April 2023      Revised:  12 July 2023      Accepted manuscript online:  20 July 2023
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.60.Cd (Classical transport)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the Research Group of Nonequilibrium Statistics (Grant No. 14078206) and Kunming University of Science and Technology, China.
Corresponding Authors:  Linru Nie     E-mail:  lrnie@163.com

Cite this article: 

Kao Jia(贾考), Lan Hu(胡兰), and Linru Nie(聂林如) Symmetric Brownian motor subjected to Lévy noise 2024 Chin. Phys. B 33 020502

[1] Maldovan M 2013 Nature 503 209
[2] Smoluchowski M V 1912 Phys. Z. 13 1069
[3] Vorotnikov D 2014 J. Math. Bio. 68 1677
[4] Huang P, Yin Z J, Tian Y, Yang J, Zhong W, Li C Z, Lian C, Li Y and Liu H L 2021 Chem. Eng. Sci. 246 116996
[5] Xiao F R, Hrabe J and Hrabetova S 2015 J. Biophys. 108 2384
[6] Zhokh A, Trypolskyia A and Strizhak P 2018 Chem. Phys. 503 71
[7] Gomez-Marin A and Sancho J M 2005 Phys. Rev. E 71 021101
[8] Nie L R and Mei D C 2009 Phys. Lett. A 373 3816
[9] Chen R Y, Xiong Y, Li Z K, He Z F, Hou F and Zhou J W 2022 Chaos, Solitons and Fractals 159 112148
[10] Chen R Y, Xiong Y, Zhuge S Y, Li Z K, Chen Q T, He Z F, Dingqiang Wu D Q, Hou F and Zhou J W 2023 Chaos, Solitons and Fractals 172 113564
[11] Chen R Y, Xiong Y, Jiang L L, He Z F and Zhou J W 2022 Chaos, Solitons and Fractals 152 111439
[12] Wu W X, Zheng Z G, Song Y L, Han Y R, Sun Z C and Li C P 2022 Chin. Phys. B 29 090503
[13] Wang L Y, Xu X P, Li Z G and Qian T Z 2020 Chin. Phys. B 29 090501
[14] Feng Y L, Dong J M and Tang X L 2016 Chin. Phys. Lett. 33 108701
[15] Chen R Y and Jiang L L 2020 Chaos 30 123140
[16] Chen R Y, Wang C J and He Z F 2019 Chaos, Solitons and Fractals 126 116
[17] Kong L W, Wan R Z and Fang H P 2016 Chin. Phys. Lett. 33 020501
[18] Liu C H, Liu T Y, Huang R Z, Gao T F and Shu Y G 2019 Acta Phys. Sin. 68 240501 (in Chinese)
[19] Chen R Y and Lv X N 2019 Physica A 514 336
[20] Du W, Jia K, Shi Z L and Nie L R 2023 Chin. Phys. B 32 020505
[21] Spiechowicz J and Luczka J 2015 Phys. Rev. E 91 062104
[22] Chen R Y, Ruan X W, Wang C J and Jiang L L 2022 Physica A 593 126929
[23] Ma Y T, Zhang F R and Li C P 2013 Computers and Mathematics with Applications 66 682
[24] Tejedor V and Metzler R 2010 J. Phys. A 43 082002
[25] Dos Santos M A F 2019 Chaos, Solitons and Fractals 124 86
[26] Metzler R, Barkai E and Klafter J 1999 Phys. Rev. Lett. 82 3563
[27] Mallick K and Marcq P 2002 Phys. Rev. E 66 041113
[28] Dybiec B, Gudowska-Nowak E and Hanggi P 2006 Phys. Rev. E 73 046104
[29] Chen R Y, Chen C Y and Nie L R 2017 Int. J. Mod. Phys. B 31 1750259
[30] Chen R Y, Pan W L, Zhang J Q and Nie L R 2016 Chaos 26 093113
[31] Dybiec B 2018 Phys. Rev. E 78 061120
[32] Cubero D, Lebedev V and Renzoni F 2010 Phys. Rev. E 82 041116
[33] Majee P, Goswami G, Sen M K and Bag B C 2009 Eur. Phys. J. B 72 435
[34] Li B W, Wang J, Wang L and Zhang G 2005 Chaos 15 015121
[35] Xu Y, Li J J, Feng J, Zhang H Q, Xu W and Duan J Q 2013 Eur. Phys. J. B. 86 198
[1] Detecting physical laws from data of stochastic dynamical systems perturbed by non-Gaussian α-stable Lévy noise
Linghongzhi Lu(陆凌弘志), Yang Li(李扬), and Xianbin Liu(刘先斌). Chin. Phys. B, 2023, 32(5): 050501.
[2] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[3] Drift coefficients of motor proteins moving along sidesteps
Li Jing-Hui (李静辉). Chin. Phys. B, 2014, 23(10): 100503.
[4] Analysis of the influence of occupation rate of public transit vehicles on mixing traffic flow in a two-lane system
Qian Yong-Sheng(钱勇生), Shi Pei-Ji(石培基), Zeng Qiong(曾琼), Ma Chang-Xi(马昌喜), Lin Fang(林芳), Sun Peng(孙鹏), and Yin Xiao-Ting(尹小亭). Chin. Phys. B, 2009, 18(9): 4037-4041.
[5] Analysis of the laser performance of Tm3+: ZBLAN glass at 1.47μm wavelength
Huang Li-Lei (黄莉蕾), Cao Guo-Xi (曹国熹), Zhang Lun (张伦), Luo Hong-Lei (罗宏雷). Chin. Phys. B, 2004, 13(10): 1728-1732.
No Suggested Reading articles found!