Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 014102    DOI: 10.1088/1674-1056/acf206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Intensity correlation properties of x-ray beams split with Laue diffraction

Chang-Zhe Zhao(赵昌哲)1,2,3, Shang-Yu Si(司尚禹)1,2,3, Hai-Peng Zhang(张海鹏)3, Lian Xue(薛莲)3, Zhong-Liang Li(李中亮)1,2,3,†, and Ti-Qiao Xiao(肖体乔)1,2,3,‡
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Abstract  Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundred-micrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated. Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
Keywords:  x-ray ghost imaging      beam splitting with Laue diffraction      intensity correlation      dynamical theory of x-ray diffraction  
Received:  27 June 2023      Revised:  01 August 2023      Accepted manuscript online:  21 August 2023
PACS:  41.50.+h (X-ray beams and x-ray optics)  
  87.59.-e (X-ray imaging)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFF0709103, 2022YFA1603601, 2021YFF0601203, and 2021YFA1600703), the National Natural Science Foundation of China (Grant No. 81430087), and the Shanghai Pilot Program for Basic Research – Chinese Academy of Sciences, Shanghai Branch (Grant No. JCYJ-SHFY-2021-010).
Corresponding Authors:  Zhong-Liang Li, Ti-Qiao Xiao     E-mail:  lizhongliang@sari.ac.cn;tqxiao@sari.ac.cn

Cite this article: 

Chang-Zhe Zhao(赵昌哲), Shang-Yu Si(司尚禹), Hai-Peng Zhang(张海鹏), Lian Xue(薛莲), Zhong-Liang Li(李中亮), and Ti-Qiao Xiao(肖体乔) Intensity correlation properties of x-ray beams split with Laue diffraction 2024 Chin. Phys. B 33 014102

[1] Eriksson M, Van der Veen J F and Quitmann C 2014 J. Synchrotron Radiat. 21 837
[2] Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R and Decker F J 2010 Nat. Photon. 4 641
[3] Willmott P 2019 An Introduction to Synchrotron Radiation:Techniques and Applications (John Wiley and Sons) p. 367
[4] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
[5] Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q and Zhu D M 2016 Phys. Rev. Lett. 117 113901
[6] Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 113902
[7] Lane T J and Ratner D 2020 Opt. Express 28 5898
[8] Klyshko D 1988 Phys. Lett. A 128 133
[9] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[10] Zhang H P, Li K, Zhao C Z, Tang J and Xiao T Q 2022 Chin. Phys. B 31 064202
[11] Klein Y, Schori A, Dolbnya I, Sawhney K and Shwartz S 2019 Opt. Express 27 3284
[12] He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A and Chen L M 2020 APL Photon. 5 056102
[13] Zhang H P, Li K, Wang F X, Yu H, Zhao C Z, Du G H, Li Z L, Deng B, Xie H L, Han S S and Xiao T Q 2022 Chin. Opt. Lett. 20 033401
[14] Schori A and Shwartz S 2017 Opt. Express 25 14822
[15] Pelliccia D, Olbinado M P, Rack A, Kingston A M, Myers G R and Paganin D M 2018 IUCrJ 5 428
[16] Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R and Paganin D M 2018 Optica 5 1516
[17] Zhang H P, Zhao C Z, Ju X L, Tang J and Xiao T Q 2022 Acta Phys. Sin. 71 074201 (in Chinese)
[18] Liu H L, Shen X, Zhu D M and Han S S 2007 Phys. Rev. A 76 053808
[19] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682
[20] Authier A 2010 Dynamical theory of x-ray diffraction (International Tables for Crystallography) pp. 626-646
[21] Zhao C Z, Si S Y, Zhang P H, Xue L, Li Z L and Xiao T Q 2022 Acta Phys. Sin. 71 046101 (in Chinese)
[22] Kato N 1960 Acta Crystallogr. 13 349
[23] Hirano K and Momose A 1999 Jpn. J. Appl. Phys. 38 L1556
[24] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682
[25] Li Z L, Fan Y C, Xue L, Zhang Z Y and Wang J 2019 AIP Conference Proceedings, June 10-15, 2019, Taiwan, China, p. 060040
[26] Ott R L and Longnecker M T 2015 An Introduction to Statistical Methods and Data Analysis (Cengage Learning) p. 587
[27] Ferri F, Magatti D, Lugiato L and Gatti A 2010 Phys. Rev. Lett. 104 253603
[1] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[2] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[3] Ghost images reconstructed from fractional-order moments with thermal light
De-Zhong Cao(曹德忠), Qing-Chen Li(李清晨), Xu-Cai Zhuang(庄绪财), Cheng Ren(任承), Su-Heng Zhang(张素恒), Xin-Bing Song(宋新兵). Chin. Phys. B, 2018, 27(12): 123401.
[4] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[5] Third-order optical intensity correlation measurements of pseudo-thermal light
Chen Xi-Hao (陈希浩), Wu Wei (吴炜), Meng Shao-Ying (孟少英), Li Ming-Fei (李明飞). Chin. Phys. B, 2014, 23(9): 090701.
[6] Subwavelength Fourier-transform imaging without a lens or a beamsplitter
Liu Rui-Feng (刘瑞丰), Yuan Xin-Xing (袁新星), Fang Yi-Zhen (方一珍), Zhang Pei (张沛), Zhou Yu (周宇), Gao Hong (高宏), Li Fu-Li (李福利). Chin. Phys. B, 2014, 23(5): 054202.
[7] High-order ghost imaging with N-colour thermal light
Liu Qian(刘骞), Luo Kai-Hong(罗开红), Chen Xi-Hao(陈希浩), and Wu Ling-An(吴令安). Chin. Phys. B, 2010, 19(9): 094211.
[8] Effects of spatial interference on intensity--intensity correlations in collective two-atom emission
Tan Hua-Tang(谭华堂). Chin. Phys. B, 2010, 19(1): 014205.
[9] The statistical fluctuation of a single-mode laser system driven by coloured pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts
Xu Dai-Hai (徐大海), Cheng Qing-Hua (程庆华), Cao Li (曹力), Wu Da-Jin (吴大进). Chin. Phys. B, 2006, 15(10): 2324-2331.
[10] Time evolution of the intensity correlation function in a single-mode laser driven by both the coloured pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts
Cheng Qing-Hua (程庆华), Cao Li (曹力), Xu Da-Hai (徐大海), Wu Da-Jin (吴大进). Chin. Phys. B, 2005, 14(6): 1159-1167.
[11] Intensity correlation time of a single-mode laser driven by two coloured noises with coloured cross-correlation with direct signal modulation
Chen Li-Mei (陈黎梅), Cao Li (曹力), Wu Da-Jin (吴大进), Wang Zhong-Long (王忠龙). Chin. Phys. B, 2005, 14(4): 764-770.
No Suggested Reading articles found!