Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030201    DOI: 10.1088/1674-1056/ad1a96
GENERAL   Next  

Decompositions of the Kadomtsev-Petviashvili equation and their symmetry reductions

Zitong Chen(陈孜童)1,†, Man Jia(贾曼)2, Xiazhi Hao(郝夏芝)3, and Senyue Lou(楼森岳)2
1 School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China;
2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
3 College of Science, Zhejiang University of Technology, Hangzhou 310014, China
Abstract  Starting with a decomposition conjecture, we carefully explain the basic decompositions for the Kadomtsev-Petviashvili (KP) equation as well as the necessary calculation procedures, and it is shown that the KP equation allows the Burgers-STO (BSTO) decomposition, two types of reducible coupled BSTO decompositions and the BSTO-KdV decomposition. Furthermore, we concentrate ourselves on pointing out the main idea and result of Bäcklund transformation of the KP equation based on a special superposition principle in the particular context of the BSTO decompositions. Using the framework of standard Lie point symmetry theory, these decompositions are studied and the problem of computing the corresponding symmetry constraints is treated.
Keywords:  Kadomtsev-Petviashvili (KP) equation      decomposition      Bäcklund transformation      symmetry reduction  
Received:  01 December 2023      Revised:  24 December 2023      Accepted manuscript online:  04 January 2024
PACS:  02.30.Ik (Integrable systems)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12235007, 11975131, and 12275144), the K. C. Wong Magna Fund in Ningbo University, and the Natural Science Foundation of Zhejiang Province of China (Grant No. LQ20A010009).
Corresponding Authors:  Zitong Chen     E-mail:  reyuansar@icloud.com

Cite this article: 

Zitong Chen(陈孜童), Man Jia(贾曼), Xiazhi Hao(郝夏芝), and Senyue Lou(楼森岳) Decompositions of the Kadomtsev-Petviashvili equation and their symmetry reductions 2024 Chin. Phys. B 33 030201

[1] Khare A and Sukhatme U 2002 Phys. Rev. Lett. 88 244101
[2] Ma W X and Fan E 2011 Comput. Math. Appl. 61 950
[3] Ma W X 2013 J. Phys.: Conf. Ser. 411 012021
[4] Lou S Y, Li Y Q and Tang X Y 2013 Chin. Phys. Lett. 30 080202
[5] Panigrahi P and Agarwal G 2003 Phys. Rev. A 67 033817
[6] Chakrabarti S, Pal J and Talukdar B 2002 Pramana 58 443
[7] Hu X B 1996 Chaos Solitons Fractals 7 211
[8] Hu X B 1997 J. Phys. A: Math. Gen. 30 8225
[9] Hu X B and Bullough R 1998 J. Phys. Soc. Jpn. 67 772
[10] Cooper F, Khare A and Sukhatme U 2002 J. Phys. A: Math. Gen. 35 10085
[11] Pöppe C 1983 Physica D 9 103
[12] Mahajan S and Miura H 2009 J. Plasma Phys. 75 145
[13] Garcia-Diaz A A and Gutierrez-Cano G 2019 Phys. Rev. D 100 064068
[14] Al Sakkaf L and Al Khawaja U 2020 Math. Methods Appl. Sci. 43 10168
[15] Cewen C 1991 Acta Math. Sin. 7 216
[16] Cao C and Geng X 1990 Nonlinear Physics: Proceedings of the International Conference, April 24-30, 1989, Shanghai, China, p. 68
[17] Cheng Y and Li Y S 1991 Phys. Lett. A 157 22
[18] Hao X and Lou S 2022 Math. Methods Appl. Sci. 45 5774
[19] Lou S Y and Chen L L 1999 J. Math. Phys. 40 6491
[20] Tang X Y and Lou S Y 2003 J. Math. Phys. 44 4000
[21] Liu Q 1995 Phys. Lett. A 198 178
[22] Wang S, Tang X Y and Lou S Y 2004 Chaos Solitons Fractals 21 231
[23] Yan Z and Lou S 2020 Appl. Math. Lett. 104 106271
[24] Lian Z J, Chen L L and Lou S Y 2005 Chin. Phys. 14 1486
[25] Lian Z J and Lou S 2005 Nonlinear Anal.: Theory Methods Appl. 63 e1167
[26] Lou S Y 1995 J. Phys. A: Math. Gen. 28 7227
[27] Lou S Y and Ruan H 2001 J. Phys. A: Math. Gen. 34 305
[28] Gorguis A 2006 Appl. Math. Comput. 173 126
[29] Salas A H 2011 Appl. Math. Sci. 5 2289
[30] Wang F R and Lou S 2023 Chaos Solitons Fractals 169 113253
[31] Chen H H 1975 J. Math. Phys. 16 2382
[32] Levi D, Pilloni L and Santini P M 1981 Phys. Lett. A 81 419
[33] David D, Levi D and Winternitz P 1986 Phys. Lett. A 118 390
[34] Rogers C, Rogers C and Schief W 2002 Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, (Cambridge: Cambridge University Press), pp. 28-30
[35] Olver P J 1993 Applications of Lie Groups to Differential Equations, (Springer Science & Business Media), pp. 286-379
[36] Lou S Y 2000 J. Math. Phys. 41 6509
[37] Elwakil S, El-Hanbaly A, El-Shewy E and El-Kamash I 2014 J. Theor. Appl. Phys. 8 93
[1] Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition
Sheng-Jie Ma(马圣杰), Shi-Long Xu(徐世龙), Xiao Dong(董骁), Xin-Yuan Zhang(张鑫源), You-Long Chen(陈友龙), and Yi-Hua Hu(胡以华). Chin. Phys. B, 2023, 32(10): 104208.
[2] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[3] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[4] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[5] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[6] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[7] Pressure dependence of the thermal stability in LiMn2O4
Yan Zeng(曾彦), Hao Liang(梁浩), Shixue Guan(管诗雪), Junpu Wang(王俊普), Wenjia Liang(梁文嘉), Mengyang Huang(黄梦阳), and Fang Peng(彭放). Chin. Phys. B, 2022, 31(1): 016104.
[8] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[9] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[10] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[11] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[12] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[13] Chaotic signal denoising algorithm based on sparse decomposition
Jin-Wang Huang(黄锦旺), Shan-Xiang Lv(吕善翔), Zu-Sheng Zhang(张足生), Hua-Qiang Yuan(袁华强). Chin. Phys. B, 2020, 29(6): 060505.
[14] Efficient tensor decomposition method for noncircular source in colocated coprime MIMO radar
Qian-Peng Xie(谢前朋), Xiao-Yi Pan(潘小义), Shun-Ping Xiao(肖顺平). Chin. Phys. B, 2020, 29(5): 054304.
[15] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
No Suggested Reading articles found!