|
|
Transition from isotropic to polar state of self-driven eccentric disks |
Jinghan Wang(王静晗), Tianliang Xu(许天亮), Jingxi He(何景熙), Kang Chen(陈康)†, and Wende Tian(田文得)‡ |
Center for Soft Condensed Matter Physics&Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China |
|
|
Abstract Inspired by the eccentricity design of self-driven disks, we propose a computational model to study the remarkable behavior of this kind of active matter via Langevin dynamics simulations. We pay attention to the effect of rotational friction coefficient and rotational noise on the phase behavior. A homogeneous system without rotational noise exhibits a sharp discontinuous transition of orientational order from an isotropic to a polar state with the increase of rotational friction coefficient. When there is rotational noise, the transition becomes continuous. The formation of polar state originates from the effective alignment effect due to the mutual coupling of the positional and orientational degrees of freedom of each disk. The rotational noise could weaken the alignment effect and cause the large spatial density inhomogeneity, while the translational noise homogenizes the system. Our model makes further conceptual progress on how the microscopic interaction among self-driven agents yields effective alignment.
|
Received: 07 March 2023
Revised: 30 March 2023
Accepted manuscript online: 16 April 2023
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
64.60.Cn
|
(Order-disorder transformations)
|
|
05.10.Gg
|
(Stochastic analysis methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21674078, 21774091, and 21574096). |
Corresponding Authors:
Kang Chen, Wende Tian
E-mail: kangchen@suda.edu.cn;tianwende@suda.edu.cn
|
Cite this article:
Jinghan Wang(王静晗), Tianliang Xu(许天亮), Jingxi He(何景熙), Kang Chen(陈康), and Wende Tian(田文得) Transition from isotropic to polar state of self-driven eccentric disks 2023 Chin. Phys. B 32 070501
|
[1] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143 [2] Sanchez T, Chen D T N, DeCamp S J, Heymann M and Dogic Z 2012 Nature 491 431 [3] Zhou S, Sokolov A, Lavrentovich O D and Aranson I S 2014 Proc. Natl. Acad. Sci. USA 111 1265 [4] Genkin M M, Sokolov A, Lavrentovich O D and Aranson I S 2017 Phys. Rev. X 7 011029 [5] Yan J, Han M, Zhang J, Xu C, Luijten E and Granick S 2016 Nat. Mater 15 1095 [6] Yang X, Ren C, Cheng K and Zhang H P 2020 Phys. Rev. E 101 022603 [7] Kümmel F, Hagen B ten, Wittkowski R, Buttinoni I, Eichhorn R, Volpe G, Löwen H and Bechinger C 2013 Phys. Rev. Lett. 110 198302 [8] Deseigne J, Dauchot O and Chaté H 2010 Phys. Rev. Lett. 105 098001 [9] Narayan V, Ramaswamy S and Menon N 2007 Science 317 105 [10] Tailleur J and Cates M E 2008 Phys. Rev. Lett. 100 218103 [11] Cates M E 2012 Rep. Prog. Phys. 75 042601 [12] Cates M E, Marenduzzo D, Pagonabarraga I and Tailleur J 2010 Proc. Natl. Acad. Sci. USA 107 11715 [13] Surrey T, Nédélec F, Leibler S and Karsenti E 2001 Science 292 1167 [14] Wioland H, Woodhouse F G, Dunkel J, Kessler J O and Goldstein R E 2013 Phys. Rev. Lett. 110 268102 [15] Kokot G, Das S, Winkler R G, Gompper G, Aranson I S and Snezhko A 2017 Proc. Natl. Acad. Sci. USA 114 12870 [16] Wensink H H, Dunkel J, Heidenreich S, Drescher K, Goldstein R E, Löwen H and Yeomans J M 2012 Proc. Natl. Acad. Sci. USA 109 14308 [17] Rubenstein M, Cornejo A and Nagpal R 2014 Science 345 795 [18] Kudrolli A, Lumay G, Volfson D and Tsimring L S 2008 Phys. Rev. Lett. 100 058001 [19] Cohen J A and Golestanian R 2014 Phys. Rev. Lett. 112 068302 [20] Fily Y and Marchetti M C 2012 Phys. Rev. Lett. 108 235702 [21] Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701 [22] Stenhammar J, Tiribocchi A, Allen R J, Marenduzzo D and Cates M E 2013 Phys. Rev. Lett. 111 145702 [23] Grégoire G and Chaté H 2004 Phys. Rev. Lett. 92 025702 [24] Huang D, Du Y, Jiang H and Hou Z 2021 Phys. Rev. E 104 034606 [25] Tian W D, Gu Y, Guo Y K and Chen K 2017 Chin. Phys. B 26 100502 [26] Yang X, Manning M L and Marchetti M C 2014 Soft Matter 10 6477 [27] Ceriani L and Verme P 2012 J. Econ. Inequal. 10 421 [28] Kudrolli A, Lumay G, Volfson D and Tsimring L S 2008 Phys. Rev. Lett. 100 058001 [29] Weitz S, Deutsch A and Peruani F 2015 Phys. Rev. E 92 012322 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|