Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 018106    DOI: 10.1088/1674-1056/19/1/018106
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Translocation of closed polymers through a nanopore under an applied external field

Jiang Shao-Chuan(江绍钏)a), Zhang Lin-Xi(章林溪) b)†, Xia A-Gen(夏阿根)a), Chen Hong-Ping(陈宏平)a), and Cheng Jun(成军)a)
a Department of Physics, Zhejiang University, Hangzhou 310027, China; b Department of Physics, Wenzhou University, Wenzhou 325027, China
Abstract  The dynamic behaviours of the translocations of closed circular polymers and closed knotted polymers through a nanopore, under the driving of an applied field, are studied by three-dimensional Langevin dynamics simulations. The power-law scaling of the translocation time $\tau$  with the chain length N and the distribution of translocation time are investigated separately. For closed circular polymers, a crossover scaling of translocation time with chain length is found to be $\tau \sim N^{\alpha}$, with the exponent α varying from $\alpha =0.71$ for relatively short chains to $\alpha =1.29$ for longer chains under driving force $F=5$. The scaling behaviour for longer chains is in good agreement with experimental results, in which the exponent $\alpha =1.27$ for the translocation of double-strand DNA. The distribution of translocation time $D(\tau)$ is close to a Gaussian function for duration time $\tau <\tau _{\rm p}$ and follows a falling exponential function for duration time $\tau >\tau _{\rm p}$. For closed knotted polymers, the scaling exponent α is 1.27 for small field force ($F=5$) and 1.38 for large field force ($F=10$). The distribution of translocation time $D(\tau)$ remarkably features two peaks appearing in the case of large driving force. The interesting result of multiple peaks can conduce to the understanding of the influence of the number of strands of polymers in the pore at the same time on translocation dynamic process and scaling property.
Keywords:  Langevin dynamics      closed polymer      scaling behaviour      distribution of translocation time  
Received:  11 February 2009      Revised:  29 April 2009      Accepted manuscript online: 
PACS:  82.35.Pq (Biopolymers, biopolymerization)  
  87.14.G- (Nucleic acids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 20574052, 20774066, 20974081 and 20934004), the Program for New Century Excellent Talents in University, China (Grant No. NCET-05-0538), and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y4090098).

Cite this article: 

Jiang Shao-Chuan(江绍钏), Zhang Lin-Xi(章林溪), Xia A-Gen(夏阿根), Chen Hong-Ping(陈宏平), and Cheng Jun(成军) Translocation of closed polymers through a nanopore under an applied external field 2010 Chin. Phys. B 19 018106

[1] Luo K F, Ollila S T T, Huopaniemi I, Nissila T A, Pomorski P, Karttunen M, Ying S C and Bhattacharya A 2008 Phys. Rev. E 78 050901
[2] Luo K F, Huopaniemi I, Nissila T A and Ying S C 2006 J. Chem. Phys. 124 114704
[3] Kasianowicz J J, Brandin E, Branton D and Deamer D W 1996 Proc. Natl. Acad. Sci. USA 93 13770
[4] Li J L, Stein D, McMullan C, Branton D, Aziz M J and Golovchenko J A 2001 Nature (London) 412 166
[5] Li J L, Gershow M, Stein D, Brandin E and Golovchenko J A 2003 Nat. Mater. 2 611
[6] Storm A J, Storm C, Chen J, Zandbergen H, Joanny J F and Dekker C 2005 Nano. Lett. 5 1193
[7] Kotsev S and Kolomeiskya A B 2007 J. Chem. Phys. 127 185103
[8] Storm A J, Chen J H, Zandbergen H W and Dekker C 2005 Phys. Rev. E 71 051903
[9] Izmitli A, Schwartz D C, Graham M D and de Pablo J J 2008 J. Chem. Phys. 128 085102
[10] Mansfield M L 2007 J. Chem. Phys. 127 244901
[11] Forrey C and Muthukumar M 2007 J. Chem. Phys. 127 015102
[12] Luo K F, Nissila T A, Ying S C and Bhattacharya A 2008 Phys. Rev. Lett. 100 058101
[13] Allen M P and Tildesley D J 1989 Computer Simulation of Liquids (New York: Oxford University Press) p259
[14] Meller A 2003 J. Phys.: Condens. Matter 15 R581
[15] Xie Y J, Shi Q W, Wang X P, Zhu P P, Yang H Y and Zhang X Y 2004 Acta Phys. Sin. 53 2796 (in Chinese)
[16] Ding K J, Cai D Q, Zhan F R, Wu L J, Wu Y J and Yu Z L 2006 Chin. Phys. 15 940
[17] Luo K F, Nissila T A, Ying S C and Bhattacharya A 2007 Phys. Rev. Lett. 99 148102
[18] Kong C Y and Muthukumar M 2002 Electrophoresis 23 2697
[19] David K L and David R N 1999 Biophys. J. 77 1824
[20] Cacciuto A and Luijten E 2006 Phys. Rev. Lett. 96 238104
[21] Meller A, Nivon L, Brandin E, Golovchenko J A and Branton D 2000 Proc. Natl. Acad. Sci. USA 97 1079
[22] Meller A, Nivon L and Branton D 2001 Phys. Rev. Lett. 86 3435
[23] Chen P, Gu J J, Brandin E, Kim Y R, Wang Q and Branton D 2004 Nano. Lett. 4 2293
[1] Effective transport of passive particles induced by chiral-active particles in microchannel
Yunfeng Hua(华昀峰), Linli He(何林李), Linxi Zhang(章林溪). Chin. Phys. B, 2017, 26(8): 080702.
[2] Evidence for the anomalous scaling behaviour of the molecular-beam epitaxy growth equation
Tang Gang(唐刚),Xia Hui(夏辉), Hao Da-Peng(郝大鹏),Xun Zhi-Peng(寻之朋), Wen Rong-Ji(温荣吉), and Chen Yu-Ling(陈玉岭) . Chin. Phys. B, 2011, 20(3): 036402.
[3] Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death
Wang Hai-Feng(王海锋), Lin Zhen-Quan(林振权), and Gao Yan(高艳). Chin. Phys. B, 2008, 17(4): 1490-1500.
[4] Dynamics of aggregation-annihilation process with cluster removals
Wang Xiang-Hong (王向红), Ke Jian-Hong (柯见洪), Lin Zhen-Quan (林振权) (林振权). Chin. Phys. B, 2004, 13(5): 765-771.
No Suggested Reading articles found!