|
|
Improving source-in-the-middle continuous-variable quantum key distribution using a heralded hybrid linear amplifier |
Lei-Xin Wu(伍磊鑫), Yan-Yan Feng(冯艳艳), and Jian Zhou(周健)† |
College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China |
|
|
Abstract A hybrid linear amplifier is inserted at the output of the source-in-the-middle distribution protocol to overcome the shortcomings of the transmission distance. The modified protocol aims to maintain a high key rate for long-distance transmission under high noise. It has the potential to significantly broaden the application range of the continuous variable quantum key distribution protocol. The effects of amplifier parameters and noise on the modified protocol are analyzed in detail with regard to applying it to a practical system. To make the simulation more realistic, the effect of finite size on the new protocol is taken into account. It will serve as a guideline for the future use of hybrid linear amplifiers. Different parameters can be adjusted to achieve the best performance for key rates of different quantum channels.
|
Received: 07 August 2022
Revised: 04 October 2022
Accepted manuscript online: 19 October 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62201620), the Outstanding Youth Program of Education Department of Hunan (Grant No. 21B0228), Changsha Municipal Natural Science Foundation (Grant No. kq2202293), Hunan Students' Platform for innovation and entrepreneurship training program (Grant No. S202210538069), and the Research Fund of Central South University of Forestry and Technology (Grant No. 1121001703). |
Corresponding Authors:
Jian Zhou
E-mail: 13142153489@163.com
|
Cite this article:
Lei-Xin Wu(伍磊鑫), Yan-Yan Feng(冯艳艳), and Jian Zhou(周健) Improving source-in-the-middle continuous-variable quantum key distribution using a heralded hybrid linear amplifier 2023 Chin. Phys. B 32 070310
|
[1] Ma H X, Bao W S and Li H W 2016 Chin. Phys. B 25 080309 [2] Zhang Y Y, Bao W S, Li H W, Zhou C, Wang W and Jiang M S 2017 Chin. Phys. Lett. 34 100302 [3] Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Song X T, Li F Y, Wang D, Chen H, Han Y G, Huang J Z, Guo J F, Hao P L, Li M, Zhang C M, Liu D, Liang W Y, Miao C H, Wu P, Guo G C and Han Z F 2014 Opt. Express 2221739 [4] Li J J, Wang Y, Li H W, Peng P, Zhou C, Jiang M S, Ma H X, Feng L X and Bao W S 2017 Chin. Phys. Lett. 34 100302 [5] Chen R K, Bao W S, Bao H Z, Zhou C and Jiang M S 2017 Chin. Phys. Lett. 34 100302 [6] Nanrun Z, Guihua Z and Lihua G 2007 American Journal of Cardiology 95 2 [7] Takeda S, Fuwa M and Loock P V 2014 Phys. Rev. Lett. 114 [8] Wu Y D and Zhou J 2016 Phys Rev. A 93 022325 [9] Pu W, Wang X, Li Y 2018 Entropy 20 157 [10] Liao S 2017 Science 356 1140 [11] Xiao M, Cao Y R and Song X L 2017 Chin. Phys. Lett. 34 100302 [12] Zhou J, Huang D and Guo Y 2018 Phys Rev. A 98 042303 [13] Xu P, Bao W S, Li H W, Wang Y and Bao H Z 2017 Chin. Phys. Lett. 34 100302 [14] Huang D, Huang P, Wang T, Li H S, Zhou Y M and Zeng G H 2016 Phys. Rev. A 94 032305 [15] Mao Y, Liu Q and Guo Y 2019 Chin. Phys. Lett. 36 5 [16] Liu C Q, Zhu C H, Wang L H, Zhang L X and Pei C X 2016 Chin. Phys. Lett. 33 100302 [17] Jouguet P, Kunz-Jacques, Sébastien and Leverrier A 2013 Nat. Photon. 7 378 [18] Li Y M, Wang X Y and Bai Z L 2017 Chin. Phys. B 25 102 [19] He Y, He Y M and Wei Y J 2017 Phys. Rev. Lett. 119 [20] Buzek V and Hillery M 1996 Phys Rev. A 54 1844 [21] Oppenheim J and Wehner S 2010 Science 330 1072 [22] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343 [23] Qi B, Zhu W and Qian L 2010 New J. Phys. 12 2991 [24] Tang G Z, Sun S H and Li Y C 2019 Chin. Phys. Lett. 36 100302 [25] Gan Y H, Wang Y, Bao W S, He R S, Zhou C and Jiang M S 2019 Chin. Phys. Lett. 36 100302 [26] Xie C L, Guo T, Wang Y J, Huang D and Zhang L 2018 Chin. Phys. Lett. 35 100302 [27] Guo Y, Liao Q and Wang Y 2017 Phys. Rev. A. 95 032304 [28] Weedbrook C 2012 Phys. Rev. A 87 1110 [29] Gong F, Jiang M and Wang T Y 2020 Journal of Optoelectronics Laser [30] Zhou J, Shi R H and Feng Y Y 2019 J. Phys. A: Math. Gen. 52 245303 [31] Xiang Y, Wang Y and Ruan X 2021 Physica Scripta 96 065103 [32] Wang T, Yu S and Zhang Y C 2014 Phys. Lett. A 378 2808 [33] Zhang J, Zhang Y C and Zheng Z 2020 Opt. Express [34] Zhang X, Zhang Y and Zhao Y 2017 Phys. Rev. A 6 042334 [35] Leverrier A and Grangier P 2010 Phys. Rev. A 81 062314 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|