Role of on-board discharge in shock wave drag reduction and plasma cloaking
Qiu Xiao-Ming(邱孝明)a)†, Tang De-Li (唐德礼)a), Sun Ai-Ping(孙爱萍)a), Liu Wan-Dong(刘万东)b), and Zeng Xue-Jun (曾学军)c)
a Southwestern Institute of Physics, Chengdu 610041, China; b Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; c China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance between the magnetic pressure and gas pressure of plane shock of a partially ionized gas consisting of the environmental gas around the nose of the vehicle and the on-board discharge-produced plasma. The relation between the shock strength and the discharge-induced magnetic pressure is studied by means of a set of one-fluid, hydromagnetic equations reformed for the present purpose, where the discharge-induced magnetic field consists of the electron current (produced by the discharge)-induced magnetic field and the partially ionized gas flow-induced one. A formula for the relation between the above parameters is derived. It shows that the discharge-induced magnetic pressure can minimize the shock strength, successfully explaining the two recent experimental observations on attached bow shock mitigation and elimination in a supersonic flow during on-board discharge [Phys. Plasmas 9 (2002) 721 and Phys. Plasmas 7 (2000) 1345]. In addition, the formula implies that the shock elimination leaves room for a layer of higher-density plasma rampart moving around the nose of the vehicle, being favourable to the plasma radar cloaking of the vehicle. The reason for it is expounded.
Received: 22 February 2006
Revised: 03 August 2006
Accepted manuscript online:
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos 40390150 and
10005001).
Cite this article:
Qiu Xiao-Ming(邱孝明), Tang De-Li (唐德礼), Sun Ai-Ping(孙爱萍), Liu Wan-Dong(刘万东), and Zeng Xue-Jun (曾学军) Role of on-board discharge in shock wave drag reduction and plasma cloaking 2007 Chinese Physics 16 186
[1]
Application of multi-pulse optical imaging to measure evolution of laser-produced counter-streaming flows Dawei Yuan(袁大伟), Yutong Li(李玉同), Baojun Zhu(朱保君), Yanfei Li(李彦霏), Jiayong Zhong(仲佳勇), Huigang Wei(魏会冈), Chang Liu(刘畅), Xiaoxia Yuan(原晓霞), Zhe Zhang(张喆), Guiyun Liang(梁贵云), Feilu Wang(王菲鹿), Fang Li(李芳), Jiarui Zhao(赵家瑞), Neng Hua(华能), Baoqiang Zhu(朱宝强), Jianqiang Zhu(朱健强), Shaoen Jiang(江少恩), Kai Du(杜凯), Yongkun Ding(丁永坤), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 054206.
[2]
Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle Yan-Fei Li(李彦霏), Yu-Tong Li(李玉同), Da-Wei Yuan(袁大伟), Fang Li(李芳), Bao-Jun Zhu(朱保君), Zhe Zhang(张喆), Jia-Yong Zhong(仲佳勇), Bo Han(韩波), Hui-Gang Wei(魏会冈), Xiao-Xing Pei(裴晓星), Jia-Rui Zhao(赵家瑞), Chang Liu(刘畅), Xiao-Xia Yuan(原晓霞), Guo-Qian Liao(廖国前), Yong-Joo Rhee, Xin Lu(鲁欣), Neng Hua(华能), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Zhi-Heng Fang(方智恒), Xiu-Guang Huang(黄秀光), Si-Zu Fu(傅思祖), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 055202.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.