CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Density-wave tendency from a topological nodal-line perspective |
Tianlun Zhao(赵天伦) and Yi Zhang(张亿)† |
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract The understanding of density waves is a vital component of our insight into electronic quantum matters. Here, we propose an additional mosaic to the existing mechanisms such as Fermi-surface nesting, electron-phonon coupling, and exciton condensation. In particular, we find that certain two-dimensional (2D) spin density-wave systems are equivalent to three-dimensional (3D) Dirac nodal-line systems in the presence of a magnetic field, whose electronic structure takes the form of Dirac-fermion Landau levels and allows a straightforward analysis of its optimal filling. The subsequent minimum-energy wave vector varies over a continuous range and shows no direct connection to the original Fermi surfaces in 2D. Also, we carry out numerical calculations where the results on model examples support our theory. Our study points out that we have yet to attain a complete understanding of the emergent density wave formalism.
|
Received: 06 September 2022
Revised: 11 November 2022
Accepted manuscript online: 16 February 2023
|
PACS:
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
71.70.Di
|
(Landau levels)
|
|
Fund: We thank Xin-Chi Zhou and Di-Zhao Zhu for insightful discussions. Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403700) and the National Natural Science Foundation of China (Grant Nos. 12174008 and 92270102). The calculations of this work are supported by the HPC facilities at Peking University. |
Corresponding Authors:
Yi Zhang
E-mail: frankzhangyi@pku.edu.cn
|
Cite this article:
Tianlun Zhao(赵天伦) and Yi Zhang(张亿) Density-wave tendency from a topological nodal-line perspective 2023 Chin. Phys. B 32 057304
|
[1] Wu T, Mayaffre H, Kramer S, Horvatic M, Berthier C, Hardy W N, Liang R, Bonn D A and Julien M H 2011 Nature 477 7363 [2] Zhang Y, Mesaros A, Fujita K, Edkins S D, Hamidian M H, Ch'ng K, Eisaki H, Uchida S, Davis J C S, Khatami E and Kim E A 2019 Nature 570 7762 [3] Chang J, Blackburn E, Holmes A T, Christensen N B, Larsen J, Mesot J, Liang R, Bonn D A, Hardy W N, Watenphul A, Zimmermann M V, Forgan E M and Hayden S M 2012 Nat. Phys. 8 12 [4] da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A and Damascelli A 2013 Science 347 6219 [5] Zhu X, Cao Y, Zhang J, Plummer E W and Guo J 2015 Proc. Natl. Acad. Sci. USA 112 8 [6] Frohlich H 1954 Proc. Roy. Soc. London A 223 296 [7] Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135 [8] Gruner G 1994 Density Waves in Solids (Boca Raton: CRC Press) pp. 1-50 [9] Chen C W, Choe J and Morosan E 2016 Rep. Prog. Phys. 79 084505 [10] Zhu X, Guo J, Zhang J and Plummer E W 2017 Adv. Phys. X 2 622 [11] Johannes M D, Mazin I I and Howells C A 2006 Phys. Rev. B 73 205102 [12] Varma C M and Simons A L 1983 Phys. Rev. Lett. 51 138 [13] Jerome D, Rice T M and Kohn W 1967 Phys. Rev. 158 462475 [14] Rossnagel K, Kipp L and Skibowski M 2002 Phys. Rev. B 65 235101 [15] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutis E 2008 Nat. Mater. 12 960965 [16] Kidd T E, Miller T, Chou M Y and Chiang T C 2002 Phys. Rev. Lett. 88 226402 [17] Moncton D E, Axe J D and DiSalvo F J 1975 Phys. Rev. Lett. 34 734 [18] Du C H, Lin W J, Su Y, Tanner B K, Hatton P D, Casa D, Keimer B, Hill J P, Oglesby C S and Hohl H 2000 J. Phys. Condens. Matter 12 5361 [19] Arguello C J, Chockalingam S P, Rosenthal E P, Zhao L, Gutierrez C, Kang J H, Chung W C, Fernandes R M, Jia S, Millis A J, Cava R J and Pasupathy A N 2014 Phys. Rev. B 89 235115 [20] Michio N and Shoji T 1982 J. Phys. Soc. Jpn 51 219227 [21] Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A H and Reznik D 2011 Phys. Rev. Lett. 107 107403 [22] Overhauser A W 1960 Phys. Rev. Lett. 4 462465 [23] Overhauser A W 1962 Phys. Rev. 128 1437 [24] Kuo Y K, Chen Y Y, Wang L M and Yang H D 2004 Phys. Rev. B 69 235114 [25] Klintberg L E, Goh S K, Alireza P L, Saines P J, Tompsett D A, Logg P W, Yang J, Chen B, Yoshimura K and Grosche F M 2012 Phys. Rev. Lett. 23 054203 [26] Wang K and Petrovic C 2012 Phys. Rev. B 86 024522 [27] Webb T A, Boyer M C, Yin Y, Chowdhury D, He Y, Kondo T, Takeuchi T, Ikuta H, Hudson E W, Hoffman J E and Hamidian M H 2019 Phys. Rev. X 9 021021 [28] Jennifer E H 2003 A Search for Alternative Electronic Order in the High Temperature Superconductor m Bi2m Sr2m CaCu2O8+δ by Scanning Tunneling Microscopy (PhD thesis) (Berkeley: University of California) [29] Hoffman J E, McElroy K, Lee D H, Lang K M, Eisaki H, Uchida S and Davis J C 2014 Science 297 5584 [30] McElroy K, Simmonds R W, Hoffman J E, Lee D H, Orenstein J, Eisaki H, Uchida S and Davis J C 2003 Nature 422 592 [31] Zhu D and Zhang Y 2021 Phys. Rev. B 104 165148 [32] Zhang Y, Maharaj A V and Kivelson S 2014 Phys. Rev. B 91 085105 [33] Moncton D E, Axe J D and DiSalvo F J 1975 Phys. Rev. Lett. 34 734 [34] McMillan W L 1976 Phys. Rev. B 14 1496 [35] Si J G, Lu W J, Wu H Y, Lv H Y, Liang X, Li Q J and Sun Y P 2020 Phys. Rev. B 23 054203 [36] Hu B F, Cheng B, Yuan R H, Dong T and Wang N L 2014 Phys. Rev. B 90 085105 [37] Shimomura S, Hayashi C, Hanasaki N, Ohnuma K, Kobayashi Y, Nakao H, Mizumaki M and Onodera H 2016 Phys. Rev. B 93 165108 [38] Sangeetha N S, Thamizhavel A, Tomy C V, Basu Saurabh, Awasthi A M, Rajak P, Bhattacharyya S, Ramakrishnan S and Pal D 2015 Phys. Rev. B 91 205131 [39] Gannot Y, Ramshaw B J and Kivelson S A 2019 Phys. Rev. B 100 045128 [40] Yao H, Lee D H and Kivelson S 2011 Phys. Rev. B 84 012507 [41] Seo K and Tewari S 2014 Phys. Rev. B 90 174503 [42] Kraus Y E and Zilberberg O 2012 Phys. Rev. Lett. 109 116404 [43] Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Phys. Rev. Lett. 109 116402 [44] Onsager L 1952 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 43 1006 [45] Lifshitz I M and Kosevich A M 1956 J. Exp. Theor. Phys. 2 636 [46] Zhang Y, Zhai F and Jiang W 2021 Phys. Rev. B 104 165139 [47] Chan C K and Lee P A 2017 Phys. Rev. B 96 195143 [48] Ramshaw B J, Modic K A, Shekhter A, Zhang Y, Kim E A, Moll P, Bachmann J W, Maja D C, Betts M K, Balakirev J B, Migliori F, Ghimire A, Bauer N J, Ronning E D and McDonald R D 2018 Nat. Commun. 23 054203 [49] Agterberg D F, Davis J C S, Edkins S D, Fradkin E, Van H, Dale J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M and Wang Y 2020 Annu. Rev. Condens. Matter Phys. 11 231270 [50] Vedmedenko E Y, Grimm U and Wiesendanger R 2004 Phys. Rev. Lett. 93 076407 [51] Tanveer M, Ruiz D P and Pastor G M 2016 Phys. Rev. B 94 094403 [52] Liu F, Ghosh S and Chong Y D 2015 Phys. Rev. B 91 014108 [53] Ptok A, Kobiaka A, Sternik M, Lazewski J, Jochym P T, Oles A M, Stankov S and Piekarz P 2021 Phys. Rev. B 104 054305 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|