Abstract The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides (ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional (2D) nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.
Shu-Dong Wu(吴曙东) Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments 2023 Chin. Phys. B 32 057303
[1] Borghardt S, Tu J S, Winkler F, Schubert J, Zander W, Leosson K and Kardynal B E 2017 Phys. Rev. Materials1 054001 [2] Tuan D V, Yang M and Dery H 2018 Phys. Rev. B98 125308 [3] Pang Y D, Wu E X, Xu Z H, Hu X D, Wu S, Xu L Y and Liu J 2021 Chin. Phys. B30 068501 [4] Ma J J, Wu K, Wang Z Y, Ma R S, Bao L H, Dai Q, Ren J D and Gao H J 2022 Chin. Phys. B31 088105 [5] Bian C, Shi J, Liu X, Yang Y, Yang H and Gao H 2022 Chin. Phys. B31 097304 [6] Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G, Wu K, Zhang C, Jiang Y, Zhu X L and Zhuang X J 2022 Chin. Phys. B31 057803 [7] Henriques J C G, Kamban H C, Pedersen T G and Peres N M R 2021 Phys. Rev. B103 235412 [8] Kusch P, Mueller N S, Hartmann M T and Reich S 2021 Phys. Rev. B103 235409 [9] Stepanov P, Vashisht A, Klaas M, Lundt N, Tongay S, Blei M, Höfling S, Volz T, Minguzzi A, Renard J, Schneider C and Richard M 2021 Phys. Rev. Lett.126 167401 [10] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett.105 136805 [11] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett.10 1271 [12] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol.7 494 [13] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol.7 490 [14] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun.3 887 [15] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett.113 076802 [16] Bastard G 1981 Phys. Rev. B24 4714 [17] Yen S T 2002 Phys. Rev. B66 075340 [18] Yen S T 2003 Phys. Rev. B68 165331 [19] ahin M 2008 Phys. Rev. B77 045317 [20] Perraud S, Kanisawa K, Wang Z Z and Fujisawa T 2008 Phys. Rev. Lett.100 056806 [21] Lin C Y and Ho Y K 2011 Phys. Rev. A84 023407 [22] Skinner B 2019 Phys. Rev. Materials3 104601 [23] Aghajanian M, Schuler B, Cochrane K A, Lee J H, Kastl C, Neaton J B, Weber-Bargioni A, Mostofi A A and Lischner J 2020 Phys. Rev. B101 081201 [24] Yang X C and Xing Y 2020 Chin. Phys. B29 087802 [25] W Chao, Li N, Dai N, Shi W Z, Hu G J and Zhu H 2021 Chin. Phys. B30 050702 [26] Wu W and Fisher A J 2021 Phys. Rev. B104 035433 [27] Pereira V M, Nilsson J and Neto A H C 2007 Phys. Rev. Lett.99 166802 [28] Noh J Y, Kim H, Park M and Kim Y S 2015 Phys. Rev. B92 115431 [29] Villari L D M, Galbraith I and Biancalana F 2018 Phys. Rev. B98 205402 [30] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys.90 021001 [31] Tuan D V, Yang M and Dery H 2018 Phys. Rev. B98 125308 [32] Prazdnichnykh A I, Glazov M M, Ren L, Robert C, Urbaszek B and Marie X 2021 Phys. Rev. B103 085302 [33] Yang X C, Yu H and Wang Y 2021 Phys. Rev. B104 245305 [34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [35] Hashemi A, Krasheninnikov A V, Puska M and Komsa H P 2019 Phys. Rev. Materials3 023806 [36] Anvari R, Zaremba E and Dignam M M 2021 Phys. Rev. B104 155402 [37] Kohn W and Luttinger J M 1955 Phys. Rev.97 883 [38] Kohn W and Luttinger J M 1955 Phys. Rev.98 915 [39] Wu S, Cheng L and Wang Q 2017 Mater. Res. Express4 085017 [40] Li S S 1993 Semiconductor Physical Electronics (Boston: Springer US) p. 246 [41] Lax M 1960 Phys. Rev.119 1502 [42] Orlova E E and Harrison P 2004 Appl. Phys. Lett.85 5257 [43] Keldysh L V 1979 JETP Lett.29 658 [44] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B84 085406 [45] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B88 045318 [46] Wu S, Cheng L and Wang Q 2019 Phys. Rev. B100 115430 [47] Wu S 2022 Physica E141 115238 [48] Luttinger J M 1956 Phys. Rev.102 1030 [49] Robertson J 2004 Eur. Phys. J.: Appl. Phys.28 265 [50] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products, 7th edn. (Amsterdam: Academic) pp. 700-755
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.