Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 038902    DOI: 10.1088/1674-1056/22/3/038902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Measuring causality by directional symbolic mutual information approach

Chen Gui (陈贵), Xie Lei (谢磊), Chu Jian (褚健)
Institute of Cyber-System and Control, Zhejiang University, Hangzhou 310027, China
Abstract  We propose a novel measure to assess causality through the comparison of symbolic mutual information between the future of one random quantity and the past of the other. This provides a new perspective different from the conventional conceptions. Based on this point of view, a new causality index is derived that uses the definition of directional symbolic mutual information. This measure presents properties different from the time delayed mutual information since the symbolization captures the dynamic features of the analyzed time series. In addition to characterizing the direction and the amplitude of the information flow, it can also detect coupling delays. This method has the property of robustness, conceptual simplicity, and fast computational speed.
Keywords:  causality measure      Bandt and Pompe method      mutual information      transfer entropy  
Received:  05 September 2012      Revised:  24 October 2012      Accepted manuscript online: 
PACS:  89.70.Cf (Entropy and other measures of information)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.45.Tp (Time series analysis)  
  87.19.lo (Information theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60904039).
Corresponding Authors:  Chen Gui     E-mail:  gui.sam.chen@gmail.com

Cite this article: 

Chen Gui (陈贵), Xie Lei (谢磊), Chu Jian (褚健) Measuring causality by directional symbolic mutual information approach 2013 Chin. Phys. B 22 038902

[1] Pikovsky A, Rosenblum M and Kurths J 2003 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[2] Pereda E, Quiroga R Q and Bhattacharya J 2005 Prog. Neurobiol. 77 1
[3] Bell C B 1962 Ann. Math. Stat. 33 587
[4] Fraser A M and Swinney H L 1986 Phys. Rev. A 33 1134
[5] Matsuda H 2000 Phys. Rev. E 62 3096
[6] Quiroga R Q, Kraskov A, Kreuz T and Grassberger P 2002 Phys. Rev. E 65 041903
[7] Paluš M, Albrecht V and Dvorak I 1993 Phys. Lett. A 175 203
[8] Wiener N 1956 The Theory of Prediction, Modern Mathematics for the Engineer (New York: McGraw-Hill)
[9] Granger C 1969 Econometrica. 37 424
[10] Hlaváčcková-Schindler K, Paluš M, Vejmelka M, and Bhattacharya J 2007 Phys. Rep. 441 1
[11] Suppes P 1970 A Probilistic Theory of Causality (Amsterdam: North-Holland Publishing Company)
[12] Selltiz C, Wrightsman L S and Cook S W 1959 Research Methods in Social Relations (New York: Holt, Rinehart andWinston)
[13] Schreiber T 2000 Phys. Rev. Lett. 85 461
[14] Paluš M, Komarek V, Hrncir Z and Sterbova K 2001 Phys. Rev. E 63 046211
[15] Barnett L, Barrett A B and Seth A K 2009 Phys. Rev. Lett. 103 238701
[16] Frenzel S and Pompe B 2007 Phys. Rev. Lett. 99 204101
[17] Zhang S Q, Jia J, Gao M and Han X 2010 Acta Phys. Sin. 59 1576 (in Chinese)
[18] Xiao F H, Yan G R and Han Y H 2005 Acta Phys. Sin. 54 550 (in Chinese)
[19] Kaiser A and Schreiber T 2002 Physica D 166 43
[20] Lungarella M, Pitti A and Kuniyoshi Y 2007 Phys. Rev. E 76 056117
[21] Staniek M and Lehnertz K 2008 Phys. Rev. Lett. 100 158101
[22] Wang J and Yu Z F 2012 Chin. Phys. B 21 018702
[23] Li N Q, Pan W, Yan L S, Luo B, Xu M F and Tang Y L 2012 Chin. Phys. Lett. 29 030502
[24] Bahraminasab A, Ghasemi F, Stefanovska A, McClintock P V E and Kantz H 2008 Phys. Rev. Lett. 100 084101
[25] Pompe B and Runge J 2011 Phys. Rev. E 83 051122
[26] Kugiumtzis D 2010 arXiv: 1007.0357v1
[27] Bandt C and Pompe B 2002 Phys. Rev. Lett. 88 174102
[28] Amigó J M 2010 Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and all that (Berlin Heidelberg: Springer-Verlag)
[29] Wang Q, Shen Y and Zhang J Q 2005 Physica D 200 287
[30] Cover T and Thomas J 2004 Elements of Information Theory (2nd edn.) (New Jersey: Wiley-Interscience)
[31] Chen Y H, Rangarajan G, Feng J F and Ding M Z 2004 Phys. Lett. A 324 26
[32] Gourevitch B, Le Bouquin-Jeannes R and Faucon G 2006 Biol. Cybern. 95 349
[33] Quiroga R Q, Kreuz T and Grassberger P 2002 Phys. Rev. E 66 041904
[34] Marinazzo D, Pellicoro M and Stramaglia S 22008 Phys. Rev. Lett. 100 144103
[35] Kraskov A, Stögbauer H and Grassberger P 2004 Phys. Rev. E 69 066138
[1] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[2] Information flow between stock markets: A Koopman decomposition approach
Semba Sherehe, Huiyun Wan(万慧云), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2022, 31(1): 018902.
[3] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[4] Characteristics analysis of acupuncture electroencephalograph based on mutual information Lempel–Ziv complexity
Luo Xi-Liu(罗昔柳), Wang Jiang(王江), Han Chun-Xiao(韩春晓), Deng Bin(邓斌), Wei Xi-Le(魏熙乐), and Bian Hong-Rui(边洪瑞) . Chin. Phys. B, 2012, 21(2): 028701.
[5] Symbolic transfer entropy-based premature signal analysis
Wang Jun(王俊) and Yu Zheng-Feng(余正锋) . Chin. Phys. B, 2012, 21(1): 018702.
[6] Quantum and classical correlations for a two-qubit X structure density matrix
Ding Bang-Fu(丁邦福), Wang Xiao-Yun(王小云), and Zhao He-Ping(赵鹤平) . Chin. Phys. B, 2011, 20(10): 100302.
[7] Average mutual information of the random block-message ensembles for many-letters
Hao San-Ru (郝三如), Hou Bo-Yu (侯伯宇). Chin. Phys. B, 2002, 11(5): 450-455.
No Suggested Reading articles found!