Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 088902    DOI: 10.1088/1674-1056/24/8/088902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Oscillatory Shannon entropy in the process of equilibration of nonequilibrium crystalline systems

A. Giria, Nilangshu K. Dasb, P. Barata
a Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064, India;
b Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
Abstract  We present a study of the equilibration process of some nonequilibrium crystalline systems by means of molecular dynamics simulation technique. The nonequilibrium conditions are achieved in the systems by randomly defining velocity components of the constituent atoms. The calculated Shannon entropy from the probability distribution of the kinetic energy among the atoms at different instants during the process of equilibration shows oscillation as the system relaxes towards equilibrium. Fourier transformations of these oscillating Shannon entropies reveal the existence of Debye frequency of the concerned system.
Keywords:  entropy and other measures of information      nonequilibrium and irreversible thermodynamics  
Received:  12 December 2014      Revised:  16 February 2015      Accepted manuscript online: 
PACS:  89.70.Cf (Entropy and other measures of information)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Corresponding Authors:  A. Giri     E-mail:  amal.vu@gmail.com

Cite this article: 

A. Giri, Nilangshu K. Das, P. Barat Oscillatory Shannon entropy in the process of equilibration of nonequilibrium crystalline systems 2015 Chin. Phys. B 24 088902

[1] Seifert Udo 2012 Rep. Prog. Phys. 75 126001
[2] Gallavotti Giovanni 1996 Phys. Rev. Lett. 77 4334
[3] Kubo R 1966 Rep. Prog. Phys. 29 255
[4] Shannon C E 1948 The Bell System Technical Journal 27 379
[5] Barat P, Giri A, Bhattacharya M, Das Nilangshu K and Dutta A 2013 Europhys. Lett. 104 50003
[6] http://micro.standford.edu/caiwei/Forum/2004-12-12-MD++/
[7] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[8] Daw M S, Foiles S M and Baskes M I 1993 Mater. Sci. Rep. 9 251
[9] Ercolessi F and Adams J B 1994 Europhys. Lett. 26 583
[10] Lennard-Jones J E 1924 Proc. R. Soc. Lond. A 106 463
[11] Finnis M W and Sinclair J E 1984 Phil. Mag. A 50 45
[12] David Sands and Jeremy Dunning-Davies arXiv:1301.1364
[13] Ho C Y, Powell RWand Liley P E 1975 Journal of Physical and Chemical Reference Data, Volume 3, Supplement No. 1
[14] Stewart G R 1983 Rev. Sci. Instrum. 54 1
[15] Chakrabarti C G and Chakrabarty I 2006 Mod. Phys. Lett. B 20 1471
[16] Fundamentals of Statistical and Thermal Physics, Section A.12: The H theorem and the approach to equilibrium, F. Reif
[1] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[2] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[3] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
No Suggested Reading articles found!