Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 068901    DOI: 10.1088/1674-1056/acb75f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Identification of key recovering node for spatial networks

Zijian Yan(严子健)1, Yongxiang Xia(夏永祥)1,†, Lijun Guo(郭丽君)2, Lingzhe Zhu(祝令哲)1, Yuanyuan Liang(梁圆圆)1, and Haicheng Tu(涂海程)1
1 School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
2 China Intelligent Transportation Systems Association, Beijing 100160, China
Abstract  Many networks in the real world have spatial attributes, such as location of nodes and length of edges, called spatial networks. When these networks are subject to some random or deliberate attacks, some nodes in the network fail, which causes a decline in the network performance. In order to make the network run normally, some of the failed nodes must be recovered. In the case of limited recovery resources, an effective key node identification method can find the key recovering node in the failed nodes, by which the network performance can be recovered most of the failed nodes. We propose two key recovering node identification methods for spatial networks, which are the Euclidean-distance recovery method and the route-length recovery method. Simulations on homogeneous and heterogeneous spatial networks show that the proposed methods can significantly recover the network performance.
Keywords:  complex networks      spatial networks      congestion      key recovering node  
Received:  12 October 2022      Revised:  19 January 2023      Accepted manuscript online:  31 January 2023
PACS:  89.75.-k (Complex systems)  
  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
  89.40.-a (Transportation)  
Fund: Project supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ23F030012), and the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. GK229909299001-018).
Corresponding Authors:  Yongxiang Xia     E-mail:  xiayx@hdu.edu.cn

Cite this article: 

Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程) Identification of key recovering node for spatial networks 2023 Chin. Phys. B 32 068901

[1] Feng X, He S W and Li Y B2019 Transportmetrica A: Transport Sci. 15 1825
[2] Pagani G A and Aiello M2013 Physica A 392 2688
[3] Gan C Q, Yang X F, Liu W P, Zhu Q Y, Jin J and He L2014 Commun. Nonlinear Sci. Numer. Simul. 19 2785
[4] Freeman L C1978 Social Networks 1 215
[5] Ganesh A, Massoulié L and Towsley D2005 IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, March 13-17, 2005, Miami, USA, p. 1455
[6] Lin J Y and Ban Y F2013 Transport Rev. 33 658
[7] Boss M, Elsinger H, Summer M and Thurner 4 S2004 Quant. Finance 4 677
[8] Fang P J, Zhang D M and He M H2015 Chin. Phys. Lett. 32 88901
[9] Dong G G, Wang F, Shekhtman L M, Danziger M M, Fan J F, Du R J, Liu J G, Tian L X, Stanley H E and Havlin S2021 Proc. Natl. Acad. Sci. USA 118 e1922831118
[10] Xia Y X, Wang C, Shen H L and Song H N2020 Physica A 559 125071
[11] Liang Y Y, Xia Y X and Yang X H2022 Physica A 591 126800
[12] Tu H C, Xia Y X, Iu H H and Chen X2018 IEEE Trans. Circuits Syst. II: Express Briefs 66 126
[13] Wu J, Liu Y and Ruan Q2022 Nonlinear Analysis: Hybrid Systems 46 101216
[14] Han W T, Yi P and Ma H L2019 Acta Phys. Sin. 68 186401 (in Chinese)
[15] Li S B, Wu J J, Gao Z Y, Lin Y and Fu B B2011 Acta Phys. Sin. 60 050701 (in Chinese)
[16] Cowen L, Ideker T, Raphael B and Sharan R2017 Nat. Rev. Genet. 18 551
[17] Yang P, Li X L, Wu M, Kwoh C K and Ng S K2011 PloS One 6 e21502
[18] Liu Y, Sanhedrai H, Dong G, Shekhtman L M, Wang F, Buldyrev S V and Havlin S2021 Natl. Sci. Rev. 8 nwaa229
[19] Righi A W, Saurin T A and Wachs P2015 Reliability Engineering and System Safety 141 142
[20] Liu T, Bai G, Tao J, Zhang Y A, Fang Y and Xu B2022 Reliability Engineering and System Safety 226 108663
[21] Liu J G, Ren Z M, Guo Q and Wang B H2013 Acta Phys. Sin. 62 178901 (in Chinese)
[22] Goh K, Oh E, Kahng B and Kim D2003 Phys. Rev. E 67 017101
[23] Brandes U, Borgatti S P and Freeman L C2016 Social Networks 44 153
[24] Liu J X, Chen S D and Wang Y G2012 International Conference on Machine Learning and Cybernetics, July 15-17, 2012, Xi'an, China, p. 920
[25] Tian H, Nie B and Zhang W J2010 International Conference on Machine Vision and Human-machine Interface, April 24-25, 2010, Kaifeng, China, p. 737
[26] Lin D W2018 J. Algorithms Comput. Technol. 12 62
[27] Yang Y Z, Yu L, Wang X, Zhou Z L, Chen Y and Kou T2019 Physica A 526 121118
[28] Fan W L, Liu Z G and Hu P2013 Phys. Scr. 88 065201
[29] Shan X W, Zhang X and Tse C K2022 IEEE Trans. Circuits Syst. II: Express Briefs 69 4859
[30] Yang Y Z, Hu M and Huang T Y2020 Chin. Phys. B 29 088903
[31] Yan X L, Cui Y P and Ni S J2020 Chin. Phys. B 29 048902
[32] Dall J and Christensen M2002 Phys. Rev. E 66 016121
[33] Jiang L R, Jin X Y, Xia Y X, Ouyang B, Wu D P and Chen X2014 Int. J. Distrib. Sensor Networks 10 764698
[34] Lin H, Xia Y X and Jiang L R2022 Acta Phys. Sin. 71 068901 (in Chinese)
[35] Motter A E and Lai Y C2002 Phys. Rev. E 66 065102
[36] Liu J, Xiong Q Y, Shi W R, Shi X and Wang K2016 Physica A 452 209
[37] Burt R S2004 Am. J. Sociol. 110 349
[38] Yu H, Cao X, Liu Z and Li Y J2017 Physica A 486 318
[1] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[2] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[8] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[11] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[12] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[13] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[14] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[15] Major impact of queue-rule choice on the performance of dynamic networks with limited buffer size
Xiang Ling(凌翔), Xiao-Kun Wang(王晓坤), Jun-Jie Chen(陈俊杰), Dong Liu(刘冬), Kong-Jin Zhu(朱孔金), Ning Guo(郭宁). Chin. Phys. B, 2020, 29(1): 018901.
No Suggested Reading articles found!