Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114302    DOI: 10.1088/1674-1056/ac6014
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water

Fei Gao(高飞)1,2,†, Fang-Hua Xu(徐芳华)1, and Zheng-Lin Li(李整林)3
1 Department of Earth System Science, Ministry of Education Key Laboratory of Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China;
2 Naval Research Institute, Tianjin 300061, China;
3 School of Ocean Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China
Abstract  Mesoscale eddies have a remarkable influence on the underwater sound field. Many previous studies have investigated the effects of eddies on transmission loss, the convergence zone, time delay, etc. However, the effects of eddies on spatial coherence are less well studied and remain unclear. In this paper, the effects of eddies on spatial coherence at the subsurface in deep water are investigated. The eddy environments are simulated with Gaussian eddy equations, the complex pressure field is obtained using a range-dependent parabolic equation model and the associated mechanism is analyzed based on ray theory and models. The results show that cold/warm mesoscale eddies affect spatial coherence in a high-intensity zone by changing the locations and width of the convergence zone. In the shadow zone, the horizontal correlation radius and the vertical correlation radius increase with range and decrease with depth, and they are increased by warm eddies and decreased by cold eddies, mainly caused by variation of the multipath structure.
Keywords:  mesoscale eddy      horizontal coherence      vertical coherence      multipath arrivals  
Received:  11 December 2021      Revised:  21 March 2022      Accepted manuscript online:  23 March 2022
PACS:  43.30.+m (Underwater sound)  
  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Cq (Ray propagation of sound in water)  
  92.10.Vz (Underwater sound)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0607900), the National Natural Science Foundation of China (Grant Nos. 42176019 and 11874061), and the Youth Innovation Promotion Association CAS (Grant No. 2021023).
Corresponding Authors:  Fei Gao     E-mail:  gao-f21@mails.tsinghua.edu.cn

Cite this article: 

Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林) Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water 2022 Chin. Phys. B 31 114302

[1] Li Z L, Dong F C, Hu Z G and Wu S L 2019 Acta Phys. Sin. 68 134305 (in Chinese)
[2] Duda T F, Collis J M, Lin Y T, Newhall A E, Lynch J F and Harry A D 2012 J. Acoust. Soc. Am. 131 1782
[3] Zhou S, Zhang R, Tao X, Gong M and Hao L 1998 Progress in Natural Science 8 292
[4] Chelton D B, Schlax M G and Samelson R M 2011 Progr. Oceanogr. 91 167
[5] Zhang Y, Chen X and Dong C 2019 Atmosphere 10 553
[6] Keppler L, Cravatte S, Chaigneau A, Pegliasco C, Gourdeau L and Singh A 2018 J. Geophys. Res. Oceans 123 2731
[7] Jian Y J, Zhang J, Liu Q S and Wang Y F 2009 Appl. Acoust. 70 432
[8] Lawrence M W 1983 J. Acoust. Soc. Am. 73 474
[9] Weinberg N L and Clark J G 1980 J. Acoust. Soc. Am. 68 703
[10] Mellberg L E, Robinson A R and Botseas G 1990 J. Acoust. Soc. Am. 87 1044
[11] Xiao Y, Li Z L, Li J, Liu J Q and Sabra K G 2019 Chin. Phys. B 28 054301
[12] Liu J, Piao S, Gong L, Zhang M, Guo Y and Zhang S 2021 J. Mar. Sci. Eng. 9 787
[13] Heaney K D and Campbell R L 2016 J. Acoust. Soc. Am. 139 918
[14] Geyer F, Sagen H, Cornuelle B, Mazloff M R and Vazquez H J 2020 J. Acoust. Soc. Am. 147 1042
[15] Sun W, Dong C, Wang R, Liu Y and Yu K 2017 J. Geophys. Res. Oceans 122 1476
[16] Calado L, A Gangopadhyay and da Silveira I C A 2006 Geophys. Res. Lett. 33 L12602
[17] Wang Q and Zhang R H 1992 J. Acoust. Soc. Am. 92 932
[18] Yang K D, Li H and Duan R 2017 Chin. Phys. Lett. 34 024301
[19] Li H, Yang K D, Lei Z X and Duan R 2017 Acoust. Aust. 45 529
[20] Li J, Li Z L and Ren Y 2016 Chin. Phys. B 25 124310
[1] A new algorithm for reconstructing the three-dimensional flow field of the oceanic mesoscale eddy
Chao Yan(颜超), Jing Feng(冯径), Ping-Lv Yang(杨平吕), and Si-Xun Huang(黄思训). Chin. Phys. B, 2021, 30(12): 120204.
No Suggested Reading articles found!