State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract We report a compact experimental setup for producing a quantum degenerate mixture of Bose Na and Fermi K gases. The atoms are collected in dual dark magneto-optical traps (MOT) with species timesharing loading to reduce the light-induced loss, and then further cooled using the gray molasses technique on the line for Na and line for K. The microwave evaporation cooling is used to cool Na in in an optically plugged magnetic trap, meanwhile, K in is sympathetically cooled. Then the mixture is loaded into a large volume optical dipole trap where Na atoms are immediately transferred to for further effective cooling to avoid the strong three-body loss between Na atoms in and K atoms in . At the end of the evaporation in optical trap, a degenerate Fermi gas of K with atoms at in the hyperfine state coexists with a Bose-Einstein condensate (BEC) of Na with atoms in the hyperfine state at 300 nK. We also can produce the two species mixture with the tunable population imbalance by adjusting the Na magneto-optical trap loading time.
(Atomic and molecular beam sources and techniques)
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003), the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101, 2018YFA0307601, and 2021YFA1401700), the National Natural Science Foundation of China (Grant Nos. 12034011, 92065108, 11974224, 12022406, and 12004229), and the Fund for Shanxi 1331 Project Key Subjects Construction.
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖) Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K 2023 Chin. Phys. B 32 023701
[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.80 885 [2] Rui J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Chen Y A, Zhao B and Pan J W 2017 Nat. Phys.13 699 [3] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys.90 025008 [4] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys.11 055049 [5] Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P and Ye J 2019 Science363 853 [6] Ferrier-Barbut I, Delehaye M, Laurent S, Grier A T, Pierce M, Rem B S, Chevy F and Salomon C 2014 Science345 1035 [7] Yao X C, Chen H Z, Wu Y P, Liu X P, Wang X Q, Jiang X, Deng Y, Chen Y A and Pan J W 2016 Phys. Rev. Lett.117 145301 [8] Blinova A A, Boshier M G and Timmermans E 2013 Phys. Rev. A88 053610 [9] Bruderer M, Klein A, Clark S R and Jaksch D 2007 Phys. Rev. A76 011605 [10] DeSalvo B J, Patel K, Cai G and Chin C 2019 Nature568 61 [11] Edri H, Raz B, Matzliah N, Davidson N and Ozeri R 2020 Phys. Rev. Lett.124 163401 [12] Truscott A G, Strecker K E, McAlexander W I, Partridge G B and Hulet R G 2001 Science291 2570 [13] Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev. Lett.87 080403 [14] Roati G, Riboli F, Modugno G and Inguscio M 2002 Phys. Rev. Lett.89 150403 [15] Hadzibabic Z, Stan C A, Dieckmann K, Gupta S, Zwierlein M W, Görlitz A and Ketterle W 2002 Phys. Rev. Lett.88 160401 [16] Silber C, Günther S, Marzok C, Deh B, Courteille P W and Zimmermann C 2005 Phys. Rev. Lett.95 170408 [17] McNamara J M, Jeltes T, Tychkov A S, Hogervorst W and Vassen W 2006 Phys. Rev. Lett.97 080404 [18] Fukuhara T, Sugawa S, Takasu Y and Takahashi Y 2009 Phys. Rev. A79 021601 [19] Tey M K, Stellmer S, Grimm R and Schreck F 2010 Phys. Rev. A82 011608 [20] Hara H, Takasu Y, Yamaoka Y, Doyle J M and Takahashi Y 2011 Phys. Rev. Lett.106 205304 [21] Hansen A H, Khramov A, Dowd W H, Jamison A O, Ivanov V V and Gupta S 2011 Phys. Rev. A84 011606 [22] Wu C H, Santiago I, Park J W, Ahmadi P and Zwierlein M W 2011 Phys. Rev. A84 011601 [23] Vaidya V D, Tiamsuphat J, Rolston S L and Porto J V 2015 Phys. Rev. A92 043604 [24] Roy R, Green A, Bowler R and Gupta S 2017 Phys. Rev. Lett.118 055301 [25] DeSalvo B J, Patel K, Johansen J and Chin C 2017 Phys. Rev. Lett.119 233401 [26] Ye Z X, Xie L Y, Guo Z, Ma X B, Wang G R, You L and Tey M K 2020 Phys. Rev. A102 033307 [27] Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett.114 205302 [28] Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B and Pan J W 2019 Science363 261 [29] Schindewolf A, Bause R, Chen X Y, Duda M, Karman T, Bloch I and Luo X Y 2022 Nature607 677 [30] Yan Z Z, Ni Y, Robens C and Zwierlein M W 2020 Science368 190 [31] Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun G M, Schreck F and Grimm R 2012 Nature485 615 [32] Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Rui J, Zhao B, Pan J W and Tiemann E 2017 Phys. Rev. A96 062705 [33] Viel A and Simoni A 2016 Phys. Rev. A93 042701 [34] Hadzibabic Z, Gupta S, Stan C A, Schunck C H, Zwierlein M W, Dieckmann K and Ketterle W 2003 Phys. Rev. Lett.91 160401 [35] Shi Z, Li Z, Wang P, Meng Z, Huang L and Zhang J 2018 Chin. Phys. Lett.35 123701 [36] Shi Z, Li Z, Wang P, Nawaz K S, Chen L, Meng Z, Huang L and Zhang J 2021 J. Opt. Soc. Am. B38 1229 [37] Li Z L, Shi Z L and Wang P J 2020 Acta Phys. Sin.69 126701 (in Chinese) [38] Wang X, Shi Z, Li Z, Gu Z, Wang P and Zhang J 2022 J. Quantum Opt.28 8 [39] Anderson B P and Kasevich M A 2001 Phys. Rev. A63 023404 [40] Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L and Veronesi S 2003 Phys. Rev. A67 053401 [41] Zhang P, Li G, Zhang Y c, Guo Y, Wang J and Zhang T 2009 Phys. Rev. A80 053420 [42] Klempt C, van Zoest T, Henninger T, Topic O, Rasel E, Ertmer W and Arlt J 2006 Phys. Rev. A73 013410 [43] Barker D S, Norrgard E B, Scherschligt J, Fedchak J A and Eckel S 2018 Phys. Rev. A98 043412 [44] Telles G, Ishikawa T, Gibbs M and Raman C 2010 Phys. Rev. A81 032710 [45] Mimoun E, Sarlo L D, Jacob D, Dalibard J and Gerbier F 2010 Phys. Rev. A81 023631 [46] Mancini M W, Caires A R L, Telles G D, Bagnato V S and Marcassa L G 2004 Eur. Phys. J. D30 105 [47] Park J W, Wu C H, Santiago I, Tiecke T G, Will S, Ahmadi P and Zwierlein M W 2012 Phys. Rev. A85 051602 [48] Nikolaus B 2015 Dual-species apparatus for creating a dipolar quantum gas of 23Na40K molecules, Ph.D. thesis Max-Planck-Institut für Quantenoptik [49] Ketterle W, Davis K B, Joffe M A, Martin A and Pritchard D E 1993 Phys. Rev. Lett.70 2253 [50] Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S and Ketterle W 1996 Phys. Rev. Lett.77 416 [51] Salomon G, Fouché L, Wang P, Aspect A, Bouyer P and Bourdel T 2013 Europhys. Lett.104 63002 [52] Aliyu M M, Zhao L, Quek X Q, Yellapragada K C and Loh H 2021 Phys. Rev. Research3 043059 [53] Fernandes D R, Sievers F, Kretzschmar N, Wu S, Salomon C and Chevy F 2012 Europhys. Lett.100 63001 [54] Bloom R S, Hu M G, Cumby T D and Jin D S 2013 Phys. Rev. Lett.111 105301 [55] Chen X Y, Duda M, Schindewolf A, Bause R, Bloch I and Luo X Y 2022 Phys. Rev. Lett.128 153401
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.