Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 023701    DOI: 10.1088/1674-1056/aca14f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K

Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We report a compact experimental setup for producing a quantum degenerate mixture of Bose $^{23}$Na and Fermi $^{40}$K gases. The atoms are collected in dual dark magneto-optical traps (MOT) with species timesharing loading to reduce the light-induced loss, and then further cooled using the gray molasses technique on the $D_{2}$ line for $^{23}$Na and $D_{1}$ line for $^{40}$K. The microwave evaporation cooling is used to cool $^{23}$Na in $| F=2,m_{F}=2\rangle$ in an optically plugged magnetic trap, meanwhile, $^{40}$K in $| F=9/2,m_{F}=9/2\rangle$ is sympathetically cooled. Then the mixture is loaded into a large volume optical dipole trap where $^{23}$Na atoms are immediately transferred to $|1,1\rangle$ for further effective cooling to avoid the strong three-body loss between $^{23}$Na atoms in $|2,2\rangle$ and $^{40}$K atoms in $|9/2,9/2\rangle$. At the end of the evaporation in optical trap, a degenerate Fermi gas of $^{40}$K with $1.9 \times10^{5}$ atoms at $T/T_{F}=0.5$ in the $|9/2,9/2\rangle$ hyperfine state coexists with a Bose-Einstein condensate (BEC) of $^{23}$Na with $8\times10^{4}$ atoms in the $|1,1\rangle$ hyperfine state at 300 nK. We also can produce the two species mixture with the tunable population imbalance by adjusting the $^{23}$Na magneto-optical trap loading time.
Keywords:  ultracold gases      degenerate Bose-Fermi mixture  
Received:  20 September 2022      Revised:  04 November 2022      Accepted manuscript online:  09 November 2022
PACS:  37.10.De (Atom cooling methods)  
  37.10.Gh (Atom traps and guides)  
  67.85.-d (Ultracold gases, trapped gases)  
  37.20.+j (Atomic and molecular beam sources and techniques)  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003), the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101, 2018YFA0307601, and 2021YFA1401700), the National Natural Science Foundation of China (Grant Nos. 12034011, 92065108, 11974224, 12022406, and 12004229), and the Fund for Shanxi 1331 Project Key Subjects Construction.
Corresponding Authors:  Pengjun Wang, Jing Zhang     E-mail:  pengjun_wang@sxu.edu.cn;jzhang74@yahoo.com,jzhang74@sxu.edu.cn

Cite this article: 

Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖) Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K 2023 Chin. Phys. B 32 023701

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Rui J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Chen Y A, Zhao B and Pan J W 2017 Nat. Phys. 13 699
[3] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[4] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[5] Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P and Ye J 2019 Science 363 853
[6] Ferrier-Barbut I, Delehaye M, Laurent S, Grier A T, Pierce M, Rem B S, Chevy F and Salomon C 2014 Science 345 1035
[7] Yao X C, Chen H Z, Wu Y P, Liu X P, Wang X Q, Jiang X, Deng Y, Chen Y A and Pan J W 2016 Phys. Rev. Lett. 117 145301
[8] Blinova A A, Boshier M G and Timmermans E 2013 Phys. Rev. A 88 053610
[9] Bruderer M, Klein A, Clark S R and Jaksch D 2007 Phys. Rev. A 76 011605
[10] DeSalvo B J, Patel K, Cai G and Chin C 2019 Nature 568 61
[11] Edri H, Raz B, Matzliah N, Davidson N and Ozeri R 2020 Phys. Rev. Lett. 124 163401
[12] Truscott A G, Strecker K E, McAlexander W I, Partridge G B and Hulet R G 2001 Science 291 2570
[13] Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev. Lett. 87 080403
[14] Roati G, Riboli F, Modugno G and Inguscio M 2002 Phys. Rev. Lett. 89 150403
[15] Hadzibabic Z, Stan C A, Dieckmann K, Gupta S, Zwierlein M W, Görlitz A and Ketterle W 2002 Phys. Rev. Lett. 88 160401
[16] Silber C, Günther S, Marzok C, Deh B, Courteille P W and Zimmermann C 2005 Phys. Rev. Lett. 95 170408
[17] McNamara J M, Jeltes T, Tychkov A S, Hogervorst W and Vassen W 2006 Phys. Rev. Lett. 97 080404
[18] Fukuhara T, Sugawa S, Takasu Y and Takahashi Y 2009 Phys. Rev. A 79 021601
[19] Tey M K, Stellmer S, Grimm R and Schreck F 2010 Phys. Rev. A 82 011608
[20] Hara H, Takasu Y, Yamaoka Y, Doyle J M and Takahashi Y 2011 Phys. Rev. Lett. 106 205304
[21] Hansen A H, Khramov A, Dowd W H, Jamison A O, Ivanov V V and Gupta S 2011 Phys. Rev. A 84 011606
[22] Wu C H, Santiago I, Park J W, Ahmadi P and Zwierlein M W 2011 Phys. Rev. A 84 011601
[23] Vaidya V D, Tiamsuphat J, Rolston S L and Porto J V 2015 Phys. Rev. A 92 043604
[24] Roy R, Green A, Bowler R and Gupta S 2017 Phys. Rev. Lett. 118 055301
[25] DeSalvo B J, Patel K, Johansen J and Chin C 2017 Phys. Rev. Lett. 119 233401
[26] Ye Z X, Xie L Y, Guo Z, Ma X B, Wang G R, You L and Tey M K 2020 Phys. Rev. A 102 033307
[27] Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
[28] Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B and Pan J W 2019 Science 363 261
[29] Schindewolf A, Bause R, Chen X Y, Duda M, Karman T, Bloch I and Luo X Y 2022 Nature 607 677
[30] Yan Z Z, Ni Y, Robens C and Zwierlein M W 2020 Science 368 190
[31] Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun G M, Schreck F and Grimm R 2012 Nature 485 615
[32] Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Rui J, Zhao B, Pan J W and Tiemann E 2017 Phys. Rev. A 96 062705
[33] Viel A and Simoni A 2016 Phys. Rev. A 93 042701
[34] Hadzibabic Z, Gupta S, Stan C A, Schunck C H, Zwierlein M W, Dieckmann K and Ketterle W 2003 Phys. Rev. Lett. 91 160401
[35] Shi Z, Li Z, Wang P, Meng Z, Huang L and Zhang J 2018 Chin. Phys. Lett. 35 123701
[36] Shi Z, Li Z, Wang P, Nawaz K S, Chen L, Meng Z, Huang L and Zhang J 2021 J. Opt. Soc. Am. B 38 1229
[37] Li Z L, Shi Z L and Wang P J 2020 Acta Phys. Sin. 69 126701 (in Chinese)
[38] Wang X, Shi Z, Li Z, Gu Z, Wang P and Zhang J 2022 J. Quantum Opt. 28 8
[39] Anderson B P and Kasevich M A 2001 Phys. Rev. A 63 023404
[40] Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L and Veronesi S 2003 Phys. Rev. A 67 053401
[41] Zhang P, Li G, Zhang Y c, Guo Y, Wang J and Zhang T 2009 Phys. Rev. A 80 053420
[42] Klempt C, van Zoest T, Henninger T, Topic O, Rasel E, Ertmer W and Arlt J 2006 Phys. Rev. A 73 013410
[43] Barker D S, Norrgard E B, Scherschligt J, Fedchak J A and Eckel S 2018 Phys. Rev. A 98 043412
[44] Telles G, Ishikawa T, Gibbs M and Raman C 2010 Phys. Rev. A 81 032710
[45] Mimoun E, Sarlo L D, Jacob D, Dalibard J and Gerbier F 2010 Phys. Rev. A 81 023631
[46] Mancini M W, Caires A R L, Telles G D, Bagnato V S and Marcassa L G 2004 Eur. Phys. J. D 30 105
[47] Park J W, Wu C H, Santiago I, Tiecke T G, Will S, Ahmadi P and Zwierlein M W 2012 Phys. Rev. A 85 051602
[48] Nikolaus B 2015 Dual-species apparatus for creating a dipolar quantum gas of 23Na40K molecules, Ph.D. thesis Max-Planck-Institut für Quantenoptik
[49] Ketterle W, Davis K B, Joffe M A, Martin A and Pritchard D E 1993 Phys. Rev. Lett. 70 2253
[50] Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S and Ketterle W 1996 Phys. Rev. Lett. 77 416
[51] Salomon G, Fouché L, Wang P, Aspect A, Bouyer P and Bourdel T 2013 Europhys. Lett. 104 63002
[52] Aliyu M M, Zhao L, Quek X Q, Yellapragada K C and Loh H 2021 Phys. Rev. Research 3 043059
[53] Fernandes D R, Sievers F, Kretzschmar N, Wu S, Salomon C and Chevy F 2012 Europhys. Lett. 100 63001
[54] Bloom R S, Hu M G, Cumby T D and Jin D S 2013 Phys. Rev. Lett. 111 105301
[55] Chen X Y, Duda M, Schindewolf A, Bause R, Bloch I and Luo X Y 2022 Phys. Rev. Lett. 128 153401
[1] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
[2] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[3] Collective modes of Weyl fermions with repulsive S-wave interaction
Xun-Gao Wang(王勋高), Huan-Yu Wang(王寰宇), Jiang-Min Zhang(张江敏), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(11): 117201.
No Suggested Reading articles found!