Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116802    DOI: 10.1088/1674-1056/abb310
REVIEW Prev   Next  

Interfaces between MoOx and MoX2 (X = S, Se, and Te)

Fengming Chen(陈凤鸣)1, Jinxin Liu(刘金鑫)1, Xiaoming Zheng(郑晓明)1, Longhui Liu(刘龙慧)1, Haipeng Xie(谢海鹏)1, Fei Song(宋飞)2, Yongli Gao(高永立)3,1, and Han Huang(黄寒)1, †
1 Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
2 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
3 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

In the past decades there have been many breakthroughs in low-dimensional materials, especially in two-dimensional (2D) atomically thin crystals like graphene. As structural analogues of graphene but with a sizeable band gap, monolayers of atomically thin transition metal dichalcogenides (with formula of MX2, M = Mo, W; X = S, Se, Te, etc.) have emerged as the ideal 2D prototypes for exploring fundamentals in physics such as valleytronics due to the quantum confinement effects, and for engineering a wide range of nanoelectronic, optoelectronic, and photocatalytic applications. Transition metal trioxides as promising materials with low evaporation temperature, high work function, and inertness to air have been widely used in the fabrication and modification of MX2. In this review, we reported the fabrications of one-dimensional MoS2 wrapped MoO2 single crystals with varied crystal direction via atmospheric pressure chemical vapor deposition method and of 2D MoOx covered MoX2 by means of exposing MoX2 to ultraviolet ozone. The prototype devices show good performances. The approaches are common to other transition metal dichalcogenides and transition metal oxides.

Keywords:  MoOx      epitaxial relationships      MoX2      layer-by-layer oxidation  
Received:  08 July 2020      Revised:  10 August 2020      Accepted manuscript online:  27 August 2020
Fund: the National Natural Science Foundation of China (Grant No. 11874427), the National Science Foundation DMR-1903962, and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2019zzts429).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Fengming Chen(陈凤鸣), Jinxin Liu(刘金鑫), Xiaoming Zheng(郑晓明), Longhui Liu(刘龙慧), Haipeng Xie(谢海鹏), Fei Song(宋飞), Yongli Gao(高永立), and Han Huang(黄寒) Interfaces between MoOx and MoX2 (X = S, Se, and Te) 2020 Chin. Phys. B 29 116802

Fig. 1.  

Crystal structures of MoS2 (a) and MoO2 (b). (c) Schematic of transition between MoOx and MoX2.

Fig. 2.  

Morphologies. Schematic description of the crystalline structure at the surfaces of (a) c-sapphire, (b) m-sapphire, and (c) a-sapphire. Al atoms and O atoms are represented by purple and red balls, respectively. The unit cells and lattice constants are marked. The representative OM images of nanorods on (d) c-sapphire, (e) m-sapphire, and (f) a-sapphire.[80]

Fig. 3.  

Compositions. (a) Typical Raman spectra of as-made c- and m-MoO2@MoS2 nanorods, nanorods, and MoS2. (b) Raman map of m-nanorods at 207 cm−1. Raman maps of c-nanorods at (c) 201 cm−1 and (d) 400 cm−1.[79,80]

Fig. 4.  

Global structural properties. (a) XRD patterns of c- (black) and m-nanorods (blue). (b) 2D-GIXRD pattern of c-nanorods.[79]

Fig. 5.  

Local structural properties. Cross-sectional SEM image of single (a) c-nanorod and (b) m-nanorod. (c) Low magnification image of c-nanorod. The insets show the HRTEM image in [201] zone and the corresponding SAED pattern. (d) Low-magnification TEM image of m-nanorod. Inset: SAED patterns of individual nanorod and enlarged high-resolution TEM image. The EDS pattern of the individual (e) c-nanorod and (f) m-nanorod.[79,80]

Fig. 6.  

Three-dimension growth models of (a) m-nanorod and (b) c-nanorod.[80]

Fig. 7.  

Electrical properties. (a) V23I14 curve of individual c-nanorod. Inset: SEM image of the device. (b) IV characteristics measured as a function of the ambient temperature. Inset: Resistance of the channel versus ambient temperature. (c) I14 as a function of V23. (d) IV curve (solid black line) and conductivity curve (dotted blue line) of individual m-nanorod. Inset: The SEM image of the device.[80,81]

Fig. 8.  

MoS2 nanoribbons by PMMA assisted decoupling. (a) Schematic diagram of the proposed transfer progress. (b) AFM topography of transferred MoS2 flake and nanoribbon. Inset: Height profiles of line scans marked in (b). (c) PL spectra of the MoS2 flake, MoO2@MoS2 nanorod, and transferred MoS2 nanoribbon. (d) Schematic representation of the formation of MoS2 nanoribbons on SiO2/Si.[82]

Fig. 9.  

CVD grown MoS2 nanoribbons without catalysts. (a) The Raman ${{\rm{E}}}_{2{\rm{g}}}^{1}$ and (b) PL A intensity maps of MoS2 nanoribbons. (c) Low magnification TEM image of transferred MoS2 nanoribbons. (d) ADF-STEM image of MoS2 nanoribbons in the [0001] zone.[83]

Fig. 10.  

Layer-by-layer oxidation of few-layer MoTe2 using UVO. (a) Raman spectra (laser wavelength 532 nm) of tetralayer MoTe2 upon intermittent UVO exposure from 0 to 50 min. The inset shows the intensity ratio of ${{\rm{B}}}_{2{\rm{g}}}^{1}/{{\rm{E}}}_{2{\rm{g}}}^{1}$. (b) The corresponding Raman mapping of ${{\rm{B}}}_{2{\rm{g}}}^{1}$ and ${{\rm{E}}}_{2{\rm{g}}}^{1}$ modes. The scale bar is 5 μm. (c) Extracted parameters as a function of UVO treatment time: mobility μ (left axis) and hole concentration nh (right axis) in logarithmic coordinates. (d) The corresponding band diagram.[84,86]

Fig. 11.  

(a)–(b) Extracted effective barrier height φB of pristine and UVO treatment MoTe2 FETs as a function of Vg. Insets in panels (a) and (b): Energy band structures between metal contacts and MoTe2 before and after MoOx doping. EF is the Fermi level energy. EC and EV represent the minimum energy of conduction band and the maximum energy of valance band, respectively. ΦSB and WSB are the Schottky barrier height and width, respectively. The Schottky barrier formed at metal/MoTe2 interface is compressed for hole doped MoTe2 device, facilitating the tunneling transport of hole.[86]

Fig. 12.  

Lateral MoSe2 p–n junction. (a) The cross section schematic structure of the lateral p–n junction device. (b) The optical photograph of p–n device. (c) IdVd curve of the MoSe2 diode in linear (black line) and log (red) scale at Vg = 0 V. The inset shows the transfer characteristic IdVg curve of the MoSe2 diode at Vd = 1 V. (d) Dynamic optical response of the device (Vd = 0 V, Vg = 0 V) under illumination of light of 450 nm, 520 nm, 633 nm.[85]

Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132 DOI: 10.1021/cr900070d
Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338 DOI: 10.1038/nature10680
Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225 DOI: 10.1021/acs.chemrev.6b00558
Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766 DOI: 10.1021/cr300263a
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699 DOI: 10.1038/nnano.2012.193
Luo F, Fan Y, Peng G, Xu S, Yang Y, Yuan K, Liu J, Ma W, Xu W, Zhu Z H 2019 ACS Photonics 6 2117 DOI: 10.1021/acsphotonics.9b00667
Geim A K 2009 Science 324 1530 DOI: 10.1126/science.1158877
Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451 DOI: 10.1073/pnas.0502848102
Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L 2013 Nano Lett. 13 550 DOI: 10.1021/nl304060g
Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 3586 DOI: 10.1038/ncomms4586
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033 DOI: 10.1038/natrevmats.2017.33
Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 8 1102 DOI: 10.1021/nn500064s
Koenig S P, Doganov R A, Schmidt H, Castro Neto A, Özyilmaz B 2014 Appl. Phys. Lett. 104 103106 DOI: 10.1063/1.4868132
Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J 2014 2D Mater. 1 025001 DOI: 10.1088/2053-1583/1/2/025001
Liu H, Du Y, Deng Y, Peide D Y 2015 Chem. Soc. Rev. 44 2732 DOI: 10.1039/C4CS00257A
Drummond N, Zolyomi V, Fal’Ko V 2012 Phys. Rev. B 85 075423 DOI: 10.1103/PhysRevB.85.075423
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227 DOI: 10.1038/nnano.2014.325
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113 DOI: 10.1021/nl203065e
Dávila M, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002 DOI: 10.1088/1367-2630/16/9/095002
Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674 DOI: 10.1021/nl302015v
Liu G B, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 44 2643 DOI: 10.1039/C4CS00301B
Jiang J, Hu W, Xie D, Yang J, He J, Gao Y, Wan Q 2019 Nanoscale 11 1360 DOI: 10.1039/C8NR07133K
Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587 DOI: 10.1039/C4CS00258J
Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T 2012 Nano Lett. 12 4013 DOI: 10.1021/nl301335q
Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2011 ACS Nano 6 74 DOI: 10.1021/nn2024557
Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456 DOI: 10.1002/adma.v25.25
Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826 DOI: 10.1038/nnano.2013.206
Yu L, Lee Y H, Ling X, Santos E J, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H 2014 Nano Lett. 14 3055 DOI: 10.1021/nl404795z
Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K 2013 ACS Nano 7 7931 DOI: 10.1021/nn402954e
Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2013 Nano Lett. 13 4212 DOI: 10.1021/nl401916s
Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Neto A H, Martin J, Adam S, Özyilmaz B, Eda G 2014 Nano Lett. 14 1909 DOI: 10.1021/nl4046922
Han W, Liu K, Yang S, Wang F, Su J, Jin B, Li H, Zhai T 2019 Sci. China Chem. 62 1300 DOI: 10.1007/s11426-019-9525-y
Cai Z, Liu B, Zou X, Cheng H-M 2018 Chem. Rev. 118 6091 DOI: 10.1021/acs.chemrev.7b00536
Wang Q, Lei Y, Wang Y, Liu Y, Song C, Zeng J, Song Y, Duan X, Wang D, Li Y 2020 Energy Environ. Sci. 13 1593 DOI: 10.1039/D0EE00450B
Fang L, Chen H, Yuan X, Huang H, Chen G, Li L, Ding J, He J, Tao S 2019 Nanoscale Res. Lett. 14 274 DOI: 10.1186/s11671-019-3110-z
Jiang J, Li N, Zou J, Zhou X, Eda G, Zhang Q, Zhang H, Li L-J, Zhai T, Wee A T 2019 Chem. Soc. Rev. 48 4639 DOI: 10.1039/C9CS00348G
Fang L, Yuan X, Liu K, Li L, Zhou P, Ma W, Huang H, He J, Tao S 2020 Nanoscale 12 3715 DOI: 10.1039/C9NR09874G
Dong R, Zhang T, Feng X 2018 Chem. Rev. 118 6189 DOI: 10.1021/acs.chemrev.8b00056
Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J 2018 Nature 556 355 DOI: 10.1038/s41586-018-0008-3
Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656 DOI: 10.1038/nature14417
Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J 2014 Nano Lett. 14 3185 DOI: 10.1021/nl500515q
Gong Y, Lei S, Ye G, Li B, He Y, Keyshar K, Zhang X, Wang Q, Lou J, Liu Z 2015 Nano Lett. 15 6135 DOI: 10.1021/acs.nanolett.5b02423
Ouyang F, Yang Z, Ni X, Wu N, Chen Y, Xiong X 2014 Appl. Phys. Lett. 104 071901 DOI: 10.1063/1.4865902
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872 DOI: 10.1038/nature07872
Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877 DOI: 10.1038/nature07919
Li S, Lin Y C, Zhao W, Wu J, Wang Z, Hu Z, Shen Y, Tang D M, Wang J, Zhang Q 2018 Nat. Mater. 17 535 DOI: 10.1038/s41563-018-0055-z
Zhou D, Li H, Si N, Jiang Y, Huang H, Li H, Niu T 2020 Appl. Phys. Lett. 116 061602 DOI: 10.1063/1.5140376
Chen Y, Sun J, Qiu W, Wang X, Liu W, Huang Y, Dai G, Yang J, Gao Y 2019 Appl. Phys. A 125 691 DOI: 10.1007/s00339-019-2997-7
Kang L, Chen H, Yang Z J, Yuan Y, Huang H, Yang B, Gao Y, Zhou C 2018 J. Appl. Phys. 123 205110 DOI: 10.1063/1.5027541
Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229 DOI: 10.1126/science.1150878
Terrones M 2009 Nature 458 845 DOI: 10.1038/458845a
Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X 2010 Nature 466 470 DOI: 10.1038/nature09211
Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D 2016 Nature 531 489 DOI: 10.1038/nature17151
Tian G, Shen Y, He B, Yu Z, Song F, Lu Y, Wang P, Gao Y, Huang H 2017 Surf. Sci. 665 89 DOI: 10.1016/j.susc.2017.08.008
He B, Tian G, Gou J, Liu B, Shen K, Tian Q, Yu Z, Song F, Xie H, Gao Y 2019 Surf. Sci. 679 147 DOI: 10.1016/j.susc.2018.09.005
Tian Q, He B, Zhao Y, Wang S, Xiao J, Song F, Wang Y, Lu Y, Xie H, Huang H 2019 Synth. Met. 251 24 DOI: 10.1016/j.synthmet.2019.03.016
Xu G, Wang X, Sun Y, Chen X, Zheng J, Sun L, Jiao L, Li J 2015 Nano Res. 8 2946 DOI: 10.1007/s12274-015-0799-6
Botello-Méndez A R, Lopez-Urias F, Terrones M, Terrones H 2009 Nanotechnology 20 325703 DOI: 10.1088/0957-4484/20/32/325703
Cai Y, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269 DOI: 10.1021/ja4109787
Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494 DOI: 10.1038/nnano.2012.96
Meyer J, Kidambi P R, Bayer B C, Weijtens C, Kuhn A, Centeno A, Pesquera A, Zurutuza A, Robertson J, Hofmann S 2014 Sci. Rep. 4 5380 DOI: 10.1038/srep05380
Huang J, Xu Z, Yang Y 2007 Adv. Funct. Mater. 17 1966 DOI: 10.1002/adfm.v17:12
Lin J D, Han C, Wang F, Wang R, Xiang D, Qin S, Zhang X-A, Wang L, Zhang H, Wee A T S 2014 ACS Nano 8 5323 DOI: 10.1021/nn501580c
Lei B, Hu Z, Xiang D, Wang J, Eda G, Han C, Chen W 2017 Nano Res. 10 1282 DOI: 10.1007/s12274-016-1386-1
Xiang D, Han C, Wu J, Zhong S, Liu Y, Lin J, Zhang X A, Hu W P, Ozyilmaz B, Neto A C 2015 Nat. Commun. 6 6485 DOI: 10.1038/ncomms7485
Lou Y H, Xu M F, Zhang L, Wang Z K, Naka S, Okada H, Liao L S 2013 Org. Electron. 14 2698 DOI: 10.1016/j.orgel.2013.07.017
Gwinner M C, Pietro R D, Vaynzof Y, Greenberg K J, Ho P K, Friend R H, Sirringhaus H 2011 Adv. Funct. Mater. 21 1432 DOI: 10.1002/adfm.v21.8
Liu X, Wang C, Yi S, Gao Y 2014 Org. Electron. 15 977 DOI: 10.1016/j.orgel.2014.02.011
Zhang M, Irfan Ding H, Gao Y, Tang C W 2010 Appl. Phys. Lett. 96 183301 DOI: 10.1063/1.3415497
Wang C, Irfan I, Gao Y 2014 Appl. Phys. Lett. 105 181602 DOI: 10.1063/1.4901164
Gao Y 2010 Mater. Sci. Eng. R Rep. 68 39 DOI: 10.1016/j.mser.2010.01.001
Wang C, Irfan I, Liu X, Gao Y 2014 J. Vac. Sci. Technol. B 32 040801 DOI: 10.1116/1.4886364
Irfan I, James Turinske A, Bao Z, Gao Y 2012 Appl. Phys. Lett. 101 093305 DOI: 10.1063/1.4748978
Choi S, Fuentes-Hernandez C, Wang C-Y, Khan T M, Larrain F A, Zhang Y, Barlow S, Marder S R, Kippelen B 2016 ACS Appl. Mater. Interfaces 8 24744 DOI: 10.1021/acsami.6b07029
Zhou C, Zhao Y, Raju S, Wang Y, Lin Z, Chan M, Chai Y 2016 Adv. Funct. Mater. 26 4223 DOI: 10.1002/adfm.v26.23
Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408 DOI: 10.1002/adma.v24.40
Ho P H, Chang Y R, Chu Y C, Li M K, Tsai C A, Wang W H, Ho C H, Chen C W, Chiu P W 2017 ACS Nano 11 7362 DOI: 10.1021/acsnano.7b03531
Yamamoto M, Dutta S, Aikawa S, Nakaharai S, Wakabayashi K, Fuhrer M S, Ueno K, Tsukagoshi K 2015 Nano Lett. 15 2067 DOI: 10.1021/nl5049753
Wu D, Yang Y, Zhu P, Zheng X, Chen X, Shi J, Song F, Gao X, Zhang X, Ouyang F, Xiong X, Gao Y, Huang H 2018 J. Phys. Chem. C 122 1860 DOI: 10.1021/acs.jpcc.7b10666
Liu J, Shi J, Wu D, Zheng X, Chen F, Xiao J, Li Y, Song F, Gao Y, Huang H 2020 Curr. Appl. Phys. 20 1130 DOI: 10.1016/j.cap.2020.07.015
Xie Q, Zheng X, Wu D, Chen X, Shi J, Han X, Zhang X, Peng G, Gao Y, Huang H 2017 Appl. Phys. Lett. 111 093505 DOI: 10.1063/1.5001183
Shi J, Wu D, Zheng X, Xie D, Song F, Zhang X, Jiang J, Yuan X, Gao Y, Huang H 2018 Phys. Status Solidi (B) 255 1800254 DOI: 10.1002/pssb.v255.9
Wu D, Shi J, Zheng X, Liu J, Dou W, Gao Y, Yuan X, Ouyang F, Huang H 2019 Phys Status Solidi Rapid Res Lett 13 1900063 DOI: 10.1002/pssr.v13.7
Zheng X, Wei Y, Deng C, Huang H, Yu Y, Wang G, Peng G, Zhu Z, Zhang Y, Jiang T, Qin S, Zhang R, Zhang X 2018 ACS Appl. Mater. Interfaces 10 30045 DOI: 10.1021/acsami.8b11003
Zheng X, Wei Y, Liu J, Wang S, Shi J, Yang H, Peng G, Deng C, Luo W, Zhao Y, Li Y, Sun K, Wan W, Xie H, Gao Y, Zhang X, Huang H 2019 Nanoscale 11 13469 DOI: 10.1039/C9NR04212A
Zheng X, Zhang X, Wei Y, Liu J, Yang H, Zhang X, Wang S, Xie H, Deng C, Gao Y 2020 Nano Res. 13 952 DOI: 10.1007/s12274-020-2724-x
Xie H, Huang H, Cao N, Zhou C, Niu D, Gao Y 2015 Physica B 477 14 DOI: 10.1016/j.physb.2015.07.032
Sun H, Liang Z, Shen K, Hu J, Ji G, Li Z, Li H, Zhu Z, Li J, Gao X 2017 Surf. Sci. 661 34 DOI: 10.1016/j.susc.2017.03.003
Kumar P, Singh M, Sharma R K, Reddy G 2016 Mater. Res. Express 3 055021 DOI: 10.1088/2053-1591/3/5/055021
Kumar P, Singh M, Reddy G 2017 Mater. Res. Express 4 036405 DOI: 10.1088/2053-1591/aa62ce
Qian F, Gradecak S, Li Y, Wen C-Y, Lieber C M 2005 Nano Lett. 5 2287 DOI: 10.1021/nl051689e
Mariani G, Zhou Z, Scofield A, Huffaker D L 2013 Nano Lett. 13 1632 DOI: 10.1021/nl400083g
Chen G, Ågren H, Ohulchanskyy T Y, Prasad P N 2015 Chem. Soc. Rev. 44 1680 DOI: 10.1039/C4CS00170B
Zheng L, Xu Y, Jin D, Xie Y 2010 J. Mater. Chem. 20 7135 DOI: 10.1039/C0JM00744G
Liu J, Zhang Z, Pan C, Zhao Y, Su X, Zhou Y, Yu D 2004 Mater. Lett. 58 3812 DOI: 10.1016/j.matlet.2004.07.034
Vorobeva N S, Lipatov A, Muratov D S, Sinitskii A 2018 Nanotechnology 29 505707 DOI: 10.1088/1361-6528/aae366
Ma Y R, Tsai C C, Lee S F, Cheng K W, Liou Y, Der Yao Y 2006 J. Magn. Magn. Mater. 304 e13 DOI: 10.1016/j.jmmm.2006.02.025
Yang T H, Aggarwal R, Gupta A, Zhou H, Narayan R J, Narayan J 2010 J. Appl. Phys. 107 053514 DOI: 10.1063/1.3327241
Zhang F, Saito K, Tanaka T, Nishio M, Guo Q 2014 J. Cryst. Growth 387 96 DOI: 10.1016/j.jcrysgro.2013.11.022
Zhao Y, Hwan Lee J, Zhu Y, Nazari M, Chen C, Wang H, Bernussi A, Holtz M, Fan Z 2012 J. Appl. Phys. 111 053533 DOI: 10.1063/1.3692391
Baker T J, Haskell B A, Wu F, Speck J S, Nakamura S 2006 Jpn. J. Appl. Phys. 45 L154 DOI: 10.1143/JJAP.45.L154
Scheuschner N, Gillen R, Staiger M, Maultzsch J 2015 Phys. Rev. B 91 235409 DOI: 10.1103/PhysRevB.91.235409
Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H 2014 Chem. Mater. 26 6371 DOI: 10.1021/cm5025662
Hao S, Yang B, Gao Y 2017 Physica Status Solidi (B) 254 1600245 DOI: 10.1002/pssb.201600245
Kumari L, Ma Y R, Tsai C C, Lin Y W, Wu S Y, Cheng K W, Liou Y 2007 Nanotechnology 18 115717 DOI: 10.1088/0957-4484/18/11/115717
Spevack P, McIntyre N 1992 J. Phys. Chem. 96 9029 DOI: 10.1021/j100201a062
Dieterle M, Weinberg G, Mestl G 2002 Phys. Chem. Chem. Phys. 4 812 DOI: 10.1039/b107012f
Wang X, Feng H, Wu Y, Jiao L 2013 J. Am. Chem. Soc. 135 5304 DOI: 10.1021/ja4013485
Mukundan S, Mohan L, Chandan G, Roul B, Krupanidhi S 2014 J. Appl. Phys. 116 204502 DOI: 10.1063/1.4902892
Pu E, Liu D, Ren P, Zhou W, Tang D, Xiang B, Wang Y, Miao J 2017 AIP Adv. 7 025015 DOI: 10.1063/1.4977543
Bhosle V, Tiwari A, Narayan J 2005 J. Appl. Phys. 97 083539 DOI: 10.1063/1.1868852
Hu B, Mai L, Chen W, Yang F 2009 Acs Nano 3 478 DOI: 10.1021/nn800844h
Ahn E, Seo Y S, Cho J, Lee I, Hwang J, Jeen H 2016 RSC Adv. 6 60704 DOI: 10.1039/C6RA09928A
Dahl-Petersen C, Šarić M, Brorson M, Moses P G, Rossmeisl J, Lauritsen J V, Helveg S 2018 ACS Nano 12 5351 DOI: 10.1021/acsnano.8b00125
Kumar P, Singh M, Sharma R K, Reddy G 2016 Mater. Chem. Phys. 178 6 DOI: 10.1016/j.matchemphys.2016.03.036
Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554 DOI: 10.1038/nmat3633
Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H 2015 Science 349 524 DOI: 10.1126/science.aab4097
Endo R, Maeda S, Jinnai Y, Lan R, Kuwahara M, Kobayashi Y, Susa M 2010 Jpn. J. Appl. Phys. 49 065802 DOI: 10.1143/JJAP.49.065802
Dai H, Rath A, Hearn Y S, Pennycook S J, Chua D H 2018 J. Phys. Chem. Lett. 9 7185 DOI: 10.1021/acs.jpclett.8b03437
Ebbesen T, Lezec H, Hiura H, Bennett J, Ghaemi H, Thio T 1996 Nature 382 54 DOI: 10.1038/382054a0
Ren X, Qi X, Shen Y, Xiao S, Xu G, Zhang Z, Huang Z, Zhong J 2016 J Phy D: Appl Phys 49 315304 DOI: 10.1088/0022-3727/49/31/315304
Ayari A, Cobas E, Ogundadegbe O, Fuhrer M S 2007 J. Appl. Phys. 101 014507 DOI: 10.1063/1.2407388
Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626 DOI: 10.1021/nl4014748
Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805 DOI: 10.1103/PhysRevLett.105.136805
Mak K F, Shan J 2016 Nat. Photonics 10 216 DOI: 10.1038/nphoton.2015.282
Eftekhari A 2017 J. Mater. Chem. A 5 18299 DOI: 10.1039/C7TA04268J
Yu Z L, Zhao Y Q, Liu B, Yang J L, Cai M Q 2020 J. Phys. Condens. Matter 32 115703 DOI: 10.1088/1361-648X/ab5b3d
Qian M Y, Yu Z L, Wan Q, He P B, Liu B, Yang J L, Xu C M, Cai M Q 2020 Phys. Status Solidi Rapid Res. Lett. 14 2000016 DOI: 10.1002/pssr.v14.7
Wu J, Li H, Yin Z, Li H, Liu J, Cao X, Zhang Q, Zhang H 2013 Small 9 3314 DOI: 10.1002/smll.201301542
Das T, Seo D, Seo J E, Chang J 2020 Adv. Electron. Mater. 6 2000008 DOI: 10.1002/aelm.v6.5
Hoffman A N, Gu Y, Tokash J, Woodward J, Xiao K, Rack P D 2020 ACS Appl. Mater. Interfaces 12 7345 DOI: 10.1021/acsami.9b21287
Lezama I G, Arora A, Ubaldini A, Barreteau C, Giannini E, Potemski M, Morpurgo A F 2015 Nano Lett. 15 2336 DOI: 10.1021/nl5045007
Yamamoto M, Wang S T, Ni M, Lin Y F, Li S L, Aikawa S, Jian W B, Ueno K, Wakabayashi K, Tsukagoshi K 2014 ACS Nano 8 3895 DOI: 10.1021/nn5007607
Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100 DOI: 10.1021/nl303583v
Liu J, Liu X, Chen Z, Liu Y, Li J 2019 Nano Res. 12 463 DOI: 10.1007/s12274-018-2243-1
Sze S M, Ng K K 2006 Physics of semiconductor devices John wiley & sons 135
Liu Y, Cai Y, Zhang G, Zhang Y W, Ang K W 2017 Adv. Funct. Mater. 27 1604638 DOI: 10.1002/adfm.v27.7
Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949 DOI: 10.1039/C4NR02311K
[1] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[2] Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer
Chen Shu-Fen (陈淑芬), Guo Xu (郭旭), Wu Qiang (邬强), Zhao Xiao-Fei (赵晓飞), Shao Ming (邵茗), Huang Wei (黄维). Chin. Phys. B, 2013, 22(12): 128506.
No Suggested Reading articles found!