Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104201    DOI: 10.1088/1674-1056/22/10/104201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The Wigner distribution function of a super Lorentz–Gauss SLG11 beam through a paraxial ABCD optical system

Zhou Yi-Min (周益民), Zhou Guo-Quan (周国泉)
School of Sciences, Zhejiang Agriculture & Forestry University, Lin’an 311300, China
Abstract  An orthonormal beam family of super Lorentz–Gauss (SLG) beam model is proposed to describe the higher-order mode beams with high divergence, which are generated by a high power diode laser. Here we consider the simplest case of the SLG beams, where there are four mutually orthogonal SLG beams, namely SLG00, SLG01, SLG10, and SLG11 beams. The SLG00 beam is just the Lorentz–Gauss beam. Based on the Collins integral formula and the Hermite-Gaussian expansion of a Lorentz function, an analytical expression for the Wigner distribution function (WDF) of an SLG11 beam through a paraxial ABCD optical system is derived. The properties of the WDF of an SLG11 beam propagating in free space are demonstrated. The normalized WDFs of an SLG11 beam at the different spatial points are depicted in several observation planes. The influence of the beam parameter on the WDF of an SLG11 beam in free space is analyzed at different propagation distances. The second-order moments of the WDF of an SLG11 beam in free space are also examined. This research reveals the propagation properties of an SLG11 beam from another perspective. The WDFs of SLG01 and SLG10 beams can be easily obtained by using the WDFs of Lorentz–Gauss beam and the SLG11 beam.
Keywords:  Wigner distribution function      super Lorentz–Gauss beam      paraxial ABCD optical system  
Received:  04 January 2013      Revised:  07 February 2013      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974179) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y1090073).
Corresponding Authors:  Zhou Guo-Quan     E-mail:  zhouguoquan178@sohu.com

Cite this article: 

Zhou Yi-Min (周益民), Zhou Guo-Quan (周国泉) The Wigner distribution function of a super Lorentz–Gauss SLG11 beam through a paraxial ABCD optical system 2013 Chin. Phys. B 22 104201

[1] Naqwi A and Durst F 1990 Appl. Opt. 29 1780
[2] Yang J, Chen T T, Ding G L and Yuan X 2008 Proc. SPIE 6824 68240A
[3] Gawhary O E and Severini S 2006 J. Opt. A: Pure Appl. Opt. 8 409
[4] Gawhary O E and Severini S 2007 Opt. Commun. 269 274
[5] Torre A, Evans W A B, Gawhary O E and Severini S 2008 J. Opt. A: Pure Appl. Opt. 10 115007
[6] Zhou G Q 2009 Chin. Phys. B 18 2779
[7] Zhou P, Wang X L, Ma Y X, Ma H T, Xu X J and Liu Z J 2010 J. Opt. 12 015409
[8] Zhou P, Wang X L, Ma Y X and Liu Z J 2010 Appl. Opt. 49 2497
[9] Yu H, Xiong L L and Lü B D 2010 Optik 121 1455
[10] Jiang Y F, Huang K K and Lu X H 2011 Opt. Express 19 9708
[11] Zhou G Q 2010 J. Opt. Soc. Am. A 27 563
[12] Zhou G Q 2010 J. Opt. 12 05570
[13] Zhou G Q 2010 Appl. Phys. B 101 371
[14] Zhou G Q 2012 Chin. Phys. B 21 054104
[15] Wigner E P 1932 Phys. Rev. 40 749
[16] Dragoman D 1997 Prog. Opt. 37 1
[17] Bastiaans M J 2000 J. Opt. Soc. Am. A 17 2475
[18] Zhang Y C and Lü B D 2004 Opt. Lett. 29 2710
[19] Hansson T, Anderson D, Lisak M, Semenov V E and Österberg U 2005 J. Opt. Soc. Am. B 25 1780
[20] Duan K L and Lü B D 2005 J. Opt. Soc. Am. B 22 1585
[21] Wu P, Lü B D and Chen T L 2005 Chin. Phys. 14 1130
[22] Lü B D, Chen T L and Wu P 2005 Acta Phys. Sin. 54 658 (in Chinese)
[23] Sun D and Zhao D M 2005 J. Opt. Soc. Am. A 22 1683
[24] Oh S B and Barbastathis G 2009 Opt. Lett. 34 2584
[25] Gao H H, Tian L, Zhang B L and Barbastathis G 2010 Opt. Lett. 35 4148
[26] Chen R P, Zheng H P and Dai C Q 2011 J. Opt. Soc. Am. A 28 1307
[27] Zhou G Q and Chen R P 2012 Appl. Phys. B 107 183
[28] Schmidt P P 1976 J. Phys. B: At. Mol. Opt. Phys. 9 2331
[29] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series, and Products (New York: Academic Press)
[1] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[2] Wigner function and the entanglement of quantized Bessel–Gaussian vortex state of quantized radiation field
Zhu Kai-Cheng (朱开成), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Tang Hui-Qin (唐慧琴 ). Chin. Phys. B, 2012, 21(8): 084204.
[3] Decoherence of elliptical states in phase space
Wang Yue-Yuan (王月媛), Liu Zheng-Jun (刘正君), Liao Qing-Hong (廖庆洪), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田). Chin. Phys. B, 2011, 20(5): 054201.
[4] A new finite-dimensional thermal coherent state and its Wigner distribution function
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙) . Chin. Phys. B, 2011, 20(1): 014204.
[5] Relations between chirp transform and Fresnel diffraction, Wigner distribution function and a fast algorithm for chirp transform
Shi Peng(石鹏) , Cao Guo-Wei(曹国威), and Li Yong-Ping(李永平). Chin. Phys. B, 2010, 19(7): 074201.
[6] The Wigner function and phase properties of superposition of two coherent states with the vacuum state
Wang Yue-Yuan (王月媛), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田). Chin. Phys. B, 2010, 19(7): 074206.
[7] Fractional Fourier transform of flat-topped multi-Gaussian beams based on the Wigner distribution function
Wu Ping (吴平), Lü Bai-Da (吕百达), Chen Tian-Lu (陈天禄). Chin. Phys. B, 2005, 14(6): 1130-1135.
No Suggested Reading articles found!