Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040302    DOI: 10.1088/1674-1056/ac2803
GENERAL Prev   Next  

Quantum watermarking based on threshold segmentation using quantum informational entropy

Jia Luo(罗佳)1,2, Ri-Gui Zhou(周日贵)1,2,†, Wen-Wen Hu(胡文文)1,2, YaoChong Li(李尧翀)1,2, and Gao-Feng Luo(罗高峰)3
1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
2 Research Center of Intelligent Information Processing and Quantum Intelligent Computing, Shanghai 201306, China;
3 College of Information Engineering, Shaoyang University, Shaoyang 422000, China
Abstract  We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image. The core idea of this scheme is to embed information into object and background of cover image in different ways. First, a threshold method adopting the quantum informational entropy is employed to determine a threshold value. The threshold value can then be further used for segmenting the cover image to a binary image, which is an authentication key for embedding and extraction information. By a careful analysis of the quantum circuits of the scheme, that is, translating into the basic gate sequences which show the low complexity of the scheme. One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image. Furthermore, the analyses of peak signal-to-noise ratio, histogram and capacity of the scheme are also provided.
Keywords:  quantum image watermarking      threshold segmentation      quantum informational entropy      quantum circuit  
Received:  29 July 2021      Revised:  03 September 2021      Accepted manuscript online:  18 September 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 6217070290), the Shanghai Science and Technology Project (Grant Nos. 21JC1402800 and 20040501500), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 21A0470), the Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ4557), and Top-Notch Innovative Talent Program for Postgraduate Students of Shanghai Maritime University (Grant No. 2021YBR009).
Corresponding Authors:  Ri-Gui Zhou     E-mail:  rgzhou@shmtu.edu.cn

Cite this article: 

Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰) Quantum watermarking based on threshold segmentation using quantum informational entropy 2022 Chin. Phys. B 31 040302

[1] Grover L K, Labs B, Avenue M and Nj M H 1996 Proceedings of the twenty-eighth annual ACM symposium on theory of computing (Philadelphia, USA:Association for Computing Machinery) pp. 212-219
[2] Bennett C H and Shor P W 1998 IEEE Trans. Inf. Theory 44 177
[3] Vlasov A Y 1997 arXiv:quant-ph/9703010[hep-ph]
[4] Sch R 2002 Phys. Rev. A 67 062311
[5] Beach G, Lomont C and Cohen C 2003 Applied Imagery Pattern Recognition Workshop, October 15-17, Washington DC, USA, 2003 pp. 2-7
[6] Venegas-Andraca S and Bose S 2003 Proc. SPIE 5105, Quantum Information and Computation August 4 2003, Orlando, Florida, United States
[7] Latorre J I 2005 arXiv:quant-ph/0510031[hep-ph]
[8] Le P Q, Dong F and Hirota K 2011 Quantum Inf. Process. 10 63
[9] Zhang Y, Lu K, Gao Y and Wang M 2013 Quantum Inf. Process. 12 2833
[10] Li H, Zhu Q, Li M and Ian H 2014 Inf. Sci. 273 212
[11] Abura'ed N, Khan F S and Bhaskar H 2017 ACM Comput. Surv. 49 75
[12] Jiang N and Wang L 2015 Quantum Inf. Process. 14 1559
[13] Sang J, Wang S and Niu X 2016 Quantum Inf. Process. 15 37
[14] Li P and Liu X 2018 Int. J. Quantum Inf. 16 1850031
[15] Yan F, Iliyasu A M, Fatichah C, Tangel M L, Betancourt J P, Dong F and Hirota K 2012 J. Quantum Inf. Sci. 2 55
[16] Yi Z, Kai L and Yinghui G 2015 Sci. China Inf. Sci. 58 1
[17] Abdel-Khalek S, Abdel-Azim G, Abo-Eleneen Z A and Obada A S F 2016 J. Russ. Laser Res. 37 141
[18] Yao X W, Wang H, Liao Z, Chen M C, Pan J, Li J, Zhang K, Lin X, Wang Z, Luo Z, Zheng W, Li J, Zhao M, Peng X and Suter D 2017 Phys. Rev. X 7 031041
[19] Wang X, Yang C, Xie G S and Liu Z 2018 Entropy 20 1
[20] Caraiman S and Manta V I 2014 Theor. Comput. Sci. 529 46
[21] Lupo C, Wilde M M and Lloyd S 2016 IEEE Trans. Inf. Theory 62 3745
[22] Bandyopadhyay S K, Bhattacharyya D and Das P 2008 The 3rd IEEE Conference on Industrial Electronics and Applications, June 3-5, 2008, Singapore, p. 959
[23] Iliyasu A M, Le P Q, Dong F and Hirota K 2012 Inf. Sci. (Ny). 186 126
[24] Li P and Zhao Y 2017 J. Comput.-Aided Design & Comput. Graph. 29 1624 (in Chinese)
[25] Luo G, Jia R Z, Wenwen L, Yang H and Ian H 2019 Quantum Inf. Process. 18 1
[26] Mogos G 2008 International Symposium on Computer Science and its Applications, October 13-15, 2008, Hobart, TAS, Australia, pp. 187-190
[27] Jiang N, Zhao N and Wang L 2016 Int. J. Theor. Phys. 55 107
[28] Heidari S and Farzadnia E 2017 Quantum Inf. Process. 16 1
[29] Qu Z, Cheng Z, Liu W and Wang X 2019 Multimed. Tools Appl. 78 7981
[30] Luo J, Zhou R G, Luo G F, Li Y C and Liu G Z 2019 Sci. Rep. 9 15134
[31] Yan F, Le P Q, Iliyasu A M, Sun B, Garcia J A, Dong F and Hirota K 2012 IEEE Congress on Evolutionary Computation, June 10-15, 2012, Brisbane, QLD, pp. 1-6
[32] Zhou R and Sun Y 2015 Quantum Inf. Process. 14 1605
[33] Iliyasu A M and Yan F 2016 Entropy 18 360
[34] Peter W, Labs A B, Ave M and Hill M 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science, November 20-22, 1994, Santa Fe, NM, USA, pp. 124-134
[35] Kak S 2007 Int. J. Theor. Phys. 46 860
[36] Kak S 2016 Int. J. Theor. Phys. 55 3017
[37] Kapur J N, Sahoo P K and Wong A K C 1985 Comput. Vis. Graph. Image Procss. 29 273
[38] Barenco A, Bennett C H, Cleve R, Divincenzo D P, Margolus N, Shor P, Smolin J and Weinfurter H 1995 Phys. Rev. A 52 3457
[39] Jiang S X, Zhou R G, Xu R and Luo G 2019 IEEE Access 7 80530
[40] Qu Z, Cheng Z and Wang X 2019 IEEE Access 7 35684
[1] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[2] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
Xiu-Bo Chen(陈秀波), Li-Yun Zhao(赵立云), Gang Xu(徐刚), Xing-Bo Pan(潘兴博), Si-Yi Chen(陈思怡), Zhen-Wen Cheng(程振文), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(4): 040305.
[3] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[4] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[5] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
[6] Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Jie Li(李洁), Yirong Jin(金贻荣), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(7): 074206.
[7] Two-qubit pure state tomography by five product orthonormal bases
Yu Wang(王宇), Yun Shang(尚云). Chin. Phys. B, 2018, 27(10): 100306.
[8] Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio
Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛). Chin. Phys. B, 2018, 27(1): 010306.
[9] Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜). Chin. Phys. B, 2015, 24(4): 044204.
[10] Switching from positive to negative absorption with electromagnetically induced transparency in circuit quantum electrodynamics
Li Hai-Chao (李海超), Ge Guo-Qin (葛国勤). Chin. Phys. B, 2014, 23(5): 054206.
[11] Controlling group velocity in a superconductive quantum circuit
Qiu Tian-Hui (邱田会), Yang Guo-Jian (杨国建). Chin. Phys. B, 2012, 21(10): 104205.
[12] Structure formation of entanglement entropy in a system of two superconducting qubits coupled with an LC-resonator
Ge Guo-Qin(葛国勤), Qin Cui(覃翠), Yin Miao(尹淼), and Huang Yong-Hua(黄勇华). Chin. Phys. B, 2011, 20(8): 080304.
[13] A quantum search algorithm based on partial adiabatic evolution
Zhang Ying-Yu(张映玉), Hu He-Ping(胡和平), and Lu Song-Feng(路松峰) . Chin. Phys. B, 2011, 20(4): 040309.
[14] Probabilistic teleportation of multi-particle partially entangled state
Chen Xiu-Bo(陈秀波), Du Jian-Zhong(杜建忠), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣) . Chin. Phys. B, 2008, 17(3): 771-777.
[15] Quantum circuits for realizing deterministic and exact teleportation via two partially entangled pairs of particles
Li Wen-Dong (李文东), Zhang Jian-Li (张建立), Gu Yong-Jian (顾永建). Chin. Phys. B, 2006, 15(3): 482-487.
No Suggested Reading articles found!