|
|
Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome |
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎)†, and Li-Li Lin(蔺丽丽)‡ |
Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract Thermally activated delayed fluorescence (TADF) molecules have attracted great attention as high efficient luminescent materials. Most of TADF molecules possess small energy gap between the first singlet excited state (S1) and the first triplet excited state (T1) to favor the up-conversion from T1 to S1. In this paper, a new TADF generation mechanism is revealed based on theoretical simulation. By systematic study of the light-emitting properties of SOBF-OMe in both toluene and in aggregation state, we find that the single SOBF-OMe could not realize TADF emission due to large energy gap as well as small up-conversion rates between S1 and T1. Through analysis of dimers, we find that dimers with intermolecular hydrogen bond (H-bond) are responsible for the generation of TADF, since smaller energy gap between S1 and T1 is found and the emission wavelength is in good agreement with experimental counterpart. The emission properties of SOBF-H are also studied for comparison, which reflect the important role of H-bond. Our theoretical results agree ith experimental results well and confirm the mechanism of H-bond induced TADF.
|
Received: 30 June 2021
Revised: 28 July 2021
Accepted manuscript online: 07 August 2021
|
PACS:
|
33.50.-j
|
(Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))
|
|
33.50.Dq
|
(Fluorescence and phosphorescence spectra)
|
|
33.50.Hv
|
(Radiationless transitions, quenching)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974216, 11874242, 21933002, and 11904210), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA056), the Taishan Scholar Project of Shandong Province, China, and the Project funded by China Postdoctoral Science Foundation (Grant No. 2018M642689). |
Corresponding Authors:
Chuan-Kui Wang, Li-Li Lin
E-mail: ckwang@sdnu.edu.cn;linll@sdnu.edu.cn
|
Cite this article:
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽) Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome 2021 Chin. Phys. B 30 123302
|
[1] Wong M Y and Colman E Z 2017 Adv. Mater. 29 1605444 [2] Masui K, Nakanotani H and Adachi C 2013 Org. Electron. 14 2721 [3] Baldo M A, O'brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151 [4] Tang C W and Vanslyke S A 1987 App. Phys. Lett. 51 913 [5] Lv L L, Yuan K, Si C D, Zuo G F and Wang Y C 2020 Org. Electron. 81 105667 [6] Hu T P, Tu Z Y, Han G C and Yi Y P 2021 J. Phys. Chem. C 125 1249 [7] Lee C W and Lee J Y 2013 Adv. Mater. 25 5450 [8] Kim S Y, Jeong W I, Mayr C, Park Y S, Kim K H, Lee J H, Moon C K, Brütting W and Kim J J 2013 Adv. Funct. Mater. 23 3896 [9] Gan L, Gao K, Cai X, Chen D C and Su S J 2018 J. Phys. Chem. Lett. 9 4725 [10] Yu Y J, Wang X Q, Liu J F, Jiang Z Q and Liao L S 2021 Science 24 102123 [11] Nakanotani H, Tsuchiya Y and Adachi C 2021 Chem. Lett. 50 938 [12] Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L and Huang W 2014 Adv. Mater. 26 7931 [13] Yao L, Zhang S T, Wang R, Li W J, Shen F Z, Yang B and Ma Y G 2014 Angew. Chem. Int. Ed. Engl. 53 2119 [14] Ansari R, Shao W H, Yoon S J, Kim J and Kieffer J 2021 ACS Appl. Mater. Inter. 13 28529 [15] Zhang X Q, Fuentes-Hernandez C, Zhang Y D, Cooper M W, Barlow S, Marder S R and Kippelen B 2018 J. Appl. Phys. 124 055501 [16] Dos Santos P L, Ward J S, Bryce M R and Monkman A P 2016 J. Phys. Chem. Lett. 7 3341 [17] Lei Y X, Yang J F, Dai W B, Lan Y S, Yang J H, Zheng X Y, Shi J B, Tong B, Cai Z X and Dong Y P 2021 Chem. Sci. 12 6518 [18] Stavrou K, Franca L G and Monkman A P 2020 ACS Appl. Electron. Mater. 2 2868 [19] Hauenstein C, Gottardi S, Bobbert P A, Coehoorn R and van Eersel H 2020 J. Appl. Phys. 128 075501 [20] Xie Z L, Huang Q Y, Yu T, Wang L Y, Mao Z, Li W L, Yang Z, Zhang Y, Liu S W, Xu J R, Chi Z G and Aldred M P 2017 Adv. Funct. Mater. 27 1703918 [21] Shi Y Z, Wang K, Tsuchiya Y, Liu W, Komino T, Fan X C, Sun D M, Dai G L, Chen J X, Zhang M, Zheng C J, Xiong S Y, Ou X M, Yu J, Jie J S, Lee C S, Adachi C and Zhang X H 2020 Mater. Horiz. 7 2734 [22] Chen J R, Yu T, Ubba E, Xie Z L, Yang Z Y, Zhang Y, Liu S W, Xu J R, Aldred M P and Chi Z G 2019 Adv. Opt. Mater. 7 1801593 [23] Wang B, Wang X J, Wang W L and Liu F Y 2016 J. Phys. Chem. C 120 21850 [24] Lin L L, Wang Z J, Fan J Z and Wang C K 2017 Org. Electron. 41 17 [25] Fan J Z, Lin L L and Wang C K 2016 Chem. Phys. Lett. 652 16 [26] Fan D, Yi Y P, Li Z D, Liu W J, Peng Q and Shuai Z G 2015 J. Phys. Chem. A 119 5233 [27] Fan J Z, Cai L, Lin L L and Wang C K 2017 Phys. Chem. Chem. Phys. 19 29872 [28] Zhang K, Zhang Y C, Ma Y Y, Fan J Z, Wang C K and Lin L L 2020 J. Phys. Chem. A. 124 8540 [29] Zhang K, Yang F, Zhang Y C, Ma Y Y, Fan J Z, Fan J, Wang C K and Lin L L 2021 J. Phys. Chem. Lett. 12 1893 [30] Sun L J, Hua W J, Liu Y, Tian G J, Chen M X, Chen M X, Yang F X, Wang S F, Zhang X T, Luo Y and Hu W P 2019 Angew. Chem. Int. Ed. Engl. 58 11311 [31] Zhang Y C, Ma Y Y, Zhang K, Wang C K, Lin L L and Fan J Z 2020 J. Lumin. 221 117046 [32] Liu J, Zhang Y C, Zhang K, Fan J Z, Wang C K and Lin L L 2019 Org. Electron. 71 212 [33] Liu J, Fan J Z, Zhang K, Zhang Y C, Wang C K and Lin L L 2020 Chin. Phys. B 29 088504 [34] Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A and Grimme S 2017 Phys. Chem. Chem. Phys. 19 32184 [35] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev.A.03, Inc., Wallingford, CT [36] Mccumber D E 1964 Phys. Rev. 136 A954 [37] Shuai Z G and Peng Q 2014 Phys. Rep. 537 123 [38] Peng Q, Yi Y P, Shuai Z G and Shao J S 2007 J. Chem. Phys. 126 114302 [39] Shuai Z G 2020 Chin. J. Chem. 38 1223 [40] Lefebvre C, Rubez G, Khartabil H, Boisson J C, Contreras G J and Henon E 2017 Phys. Chem. Chem. Phys. 19 17928 [41] Lu T and Chen F W 2012 J. Comput.Chem. 33 580 [42] Weiner S J, Kollman P A, Case D A, Singh U C, Ghio C, Alagona G, Profeta S Jr and Weiner P 1984 J. Am. Chem. Soc. 106 765 [43] Martin R L 2003 J. Chem. Phys. 118 4775 [44] Xu S, Yang Q Q, Wan Y F, Chen R F, Wang S, Si Y B, Yang B C, Liu D, Zheng C and Huang W 2019 J. Mater. Chem. C 7 9523 [45] Chen R F, Tang Y T, Wan Y F, Chen T, Zheng C, Qi Y Y, Cheng Y F and Huang W 2017 Sci. Rep. 7 6225 [46] Chen L F, Zhang S T, Li H, Chen R F, Jin L, Yuan K, Li H H, Lu P, Yang B and Huang W 2018 J. Phys. Chem. Lett. 9 5240 [47] Liu T T, Chen X J, Zhao J, Wei W C, Mao Z, Wu W, Jiao S B, Liu Y, Yang Z Y and Chi Z G 2021 Chem. Sci. 12 5171 [48] Dalton, A Molecular Electronic Structure Program |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|