ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
All-fiber laser seeded femtosecond Yb:KGW solid state regenerative amplifier |
Renchong Lv(吕仁冲)1,2, Hao Teng(滕浩)2,3,4,†, Jiajun Song(宋贾俊)2,3, Renzhu Kang(康仁铸)1,2, Jiangfeng Zhu(朱江峰)1,‡, and Zhiyi Wei(魏志义)2,3,4,§ |
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract A high efficiency compact Yb:KGW regenerative amplifier using an all-fiber laser seed source was comprehensively studied. With thermal lensing effect compensated by the cavity design, the compressed pulses with energy of 1 mJ at 1 kHz and 0.4 mJ at 10 kHz in sub-400-fs pulse duration using chirped fiber Bragg grating (CFBG) stretcher were demonstrated. A modified Frantz-Nodvik equation was developed to emulate the dynamic behavior of the regenerative amplifier. The simulation results were in good agreement with the experiment. Numerical simulations and experimental results show that the scheme can be scalable to higher energy of multi-mJ, sub-300 fs pulses.
|
Received: 27 May 2021
Revised: 25 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
Fund: Project supported by Major Program of the National Natural Science Foundation of China (Grant No. 12034020), the National Natural Science Foundation of China (Grant No. 61805274), the National Key R&D Program of China (Grant No. 2018YFB1107201), and the Synergic Extreme Condition User Facility. |
Corresponding Authors:
Hao Teng, Jiangfeng Zhu, Zhiyi Wei
E-mail: hteng@iphy.ac.cn;jfzhu@xidian.edu.cn;jfzhu@xidian.edu.cn
|
Cite this article:
Renchong Lv(吕仁冲), Hao Teng(滕浩), Jiajun Song(宋贾俊), Renzhu Kang(康仁铸), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义) All-fiber laser seeded femtosecond Yb:KGW solid state regenerative amplifier 2021 Chin. Phys. B 30 094206
|
[1] Bonamis G, Mishchick K, Audouard, E, Hönninger C, Mottay E, Lopez J and Manek-Hönninger I 2019 Journal of Laser Applications 31 022205 [2] Tokita S, Sakabe, S, Nagashima T, Hashida M and Inoue S 2015 Sci. Rep. 5 8268 [3] Lorek E, Larsen E W, Heyl C M, Carlström S, Paleček D, Zigmantas D and Mauritsson J 2014 Rev. Sci. Instru. 85 123106 [4] Saraceno C J, Sutter D, Metzger T and Ahmed M A 2019 Journal of the European Optical Society-Rapid Publications 15 15 [5] Zhao Z G and Kobayashi Y 2015 Appl. Phys. Express 9 012701 [6] Lv Z G, Yang Z, Li Q L, Li F, Wang Y S, Zhao W and Yang X J 2020 High Power Laser Science and Engineering 8 40 [7] Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, LIMPERT J and Tünnermann A 2016 Opt. Lett. 41 3439 [8] Kienel M, Müller M, Klenke A, Limpert J and Tünnermann A 2016 Opt. Lett. 41 3343 [9] Stark H, Buldt J, Müller M, Klenke A, Tünnermann A and Limpert J 2019 Opt. Lett. 44 5529 [10] Hornung M, Liebetrau H, Keppler S, Kessler A, Hellwing M, Schorcht F, Becker G, Reuter M, Polz J, Körner J, Hein J and Kaluza M 2016 Opt. Lett. 41 5413 [11] Veselis L, Bartulevicius T, Madeikis K, Michailovas A and Rusteika N 2018 Opt. Express 26 31873 [12] Verne L, Petelin J and Petkovšek R 2020 Opt. Express 28 7875 [13] Fischer J, Heinrich A C, Maier S, Jungwirth J, Brida D and Leitenstorfer A 2016 Opt. Lett. 41 246 [14] Calendron A L, Čankaya H and Kärtner F X 2014 Opt. Express 22 24752 [15] Papadopoulos D N, Pellegrina A, Ramirez L P, Georges P and Druon F 2011 Opt. Lett. 36 3816 [16] Buettner A, Buenting U, Wandt D, Neumann J and Kracht D 2010 Opt. Express 18 21973 [17] Kim G H, Yang J H, Lee D S, Kulik A V, Chizhov S A, Kang U and Yashin V E 2013 Journal of Optical Technology 80 142 [18] He H J, Yu J, Zhu W T, Guo X Y, Zhou C T and Ruan S C 2020 High Power Laser Science and Engineering 8 35 [19] Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L and Wang C Y 2019 Chin. Opt. Lett. 17 041404 [20] Chénais S, Druon F, Forget S, Balembois F and Georges P 2006 Progress in Quantum Electronics 30 89 [21] Hoos F, Li S, Meyrath T P, Braun B and Giessen H 2008 Opt. Express 16 6041 [22] Magni V 1987 JOSA A 4 1962 [23] Grishin M, Gulbinas V and Michailovas A 2007 Opt. Express 15 9434 [24] Kroetz P, Ruehl A, Murari K, Čankaya H, Kärtner F X, Hartl I and Miller R D 2016 Opt. Express 24 9905 [25] von Grafenstein L, Bock M and Griebner U 2018 IEEE Journal of Selected Topics in Quantum Electronics 24 1 [26] Ogawa K, Akahane Y, Aoyama M, Tsuji K, Tokita S, Kawanaka J, Nishioka H and Yamakawa K 2007 Opt. Express 15 8598 [27] Golinelli A, Chen X, Gontier E, Bussiére B, Tcherbakoff O, Natile M, D'Oliverira P, Paul P M and Hergott J F 2017 Opt. Lett. 42 2326 [28] Lavenu L, Natile M, Guichard F, Zaouter Y, Hanna M, Mottay E and Georges P 2017 Opt. Express 25 7530 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|