Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 074205    DOI: 10.1088/1674-1056/19/7/074205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Inversion formula and Parseval theorem for complex continuous wavelet transforms studied by entangled state representation

Hu Li-Yun(胡利云)a)†ger and Fan Hong-Yi(范洪义)b)
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  In a preceding letter (2007 Opt. Lett. 32 554) we propose complex continuous wavelet transforms and found Laguerre—Gaussian mother wavelets family. In this work we present the inversion formula and Parseval theorem for complex continuous wavelet transform by virtue of the entangled state representation, which makes the complex continuous wavelet transform theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.
Keywords:  Parseval theorem      complex continuous wavelet transforms      entangled state representation  
Received:  28 October 2009      Revised:  01 February 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.30.Kq (Fourier optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10775097), and the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ10097).

Cite this article: 

Hu Li-Yun(胡利云) and Fan Hong-Yi(范洪义) Inversion formula and Parseval theorem for complex continuous wavelet transforms studied by entangled state representation 2010 Chin. Phys. B 19 074205

[1] Jaffard S, Meyer Y and Ryan R D 2001 Wavelets, Tools for Science & Technology (Philadelphia: Society for Industrial and Applied Mathematics)
[2] Daubechies I 1992 Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics (SIAM) (Philadelphia: Baker & Taylor Books)
[3] Pinsky M A 2002 Introduction to Fourier Analysis and Wavelets (New York: Books/Cole)
[4] Goodman J W 1968 Introduction to Fourier Optics (New York: McGraw-Hill)
[5] Hu L Y and Fan H Y 2008 J. Mod. Opt. 55 1835
[6] Fan H Y and Lu H L 2006 Opt. Lett. 31 407
[7] Fan H Y and Lu J F 2004 Commun. Theor. Phys. 41 681
[8] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[9] Fan H Y and Lu H L 2007 Opt. Lett. 32 554
[10] Wunsche A 2000 J. Phys. A Math. and Gen. 33 1603
[11] Loudon R, and Knight P L 1987 J. Mod. Opt. 34 709
[12] Scully M O and Zubairy M S 1997 Quantum Optics (Berlin: Cambridge University)
[13] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[14] Fan H Y and Lu H L 2005 Int. J. Mod. Phys. B 19 799
[15] Fan H Y and Hu L Y 2009 Chin. Phys. B 18 0611
[16] Fan H Y and Hu L Y 2008 Chin. Phys. B 17 1640 endfootnotesize
[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[4] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[5] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[6] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[7] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[8] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[9] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[12] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[13] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
[14] Quantum mechanical photoncount formula derived by entangled state representation
Hu Li-Yun(胡利云), Wang Zi-Sheng(王资生), L. C. Kwek, and Fan Hong-Yi(范洪义). Chin. Phys. B, 2011, 20(8): 084203.
[15] Time evolution of distribution functions in dissipative environments
Hu Li-Yun(胡利云), Chen Fei(陈菲), Wang Zi-Sheng(王资生), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2011, 20(7): 074204.
No Suggested Reading articles found!