Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040301    DOI: 10.1088/1674-1056/abcf34
GENERAL Prev   Next  

Discrete wavelet structure and discrete energy of classical plane light waves

Xing-Chu Zhang(张兴初)1 and Wei-Long She(佘卫龙)2,3,†
1 Department of Physics and Information Engineering, Guangdong University of Education, Guangzhou 510303, China;
2 School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 3 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
Abstract  We find by the wavelet transform that the classical plane light wave of linear polarization can be decomposed into a series of discrete Morlet wavelets. In the theoretical frame, the energy of the classical light wave becomes discrete; interestingly, the discretization is consistent with the energy division of P portions in Planck radiation theory, where P is an integer. It is shown that the changeable energy of a basic plane light wave packet or wave train is $H_0k =np_0k \omega (n=1, 2, 3, \ldots; k=\vert  k\vert$), with discrete wavelet structure parameter n, wave vector k and idler frequency ω , and a constant p0k. The wave-particle duality from the Mach-Zehnder interference of single photons is simulated by using random basic plane light wave packets.
Keywords:  classic plane light wave      discrete wavelet structure      discrete energy  
Received:  05 July 2020      Revised:  10 November 2020      Accepted manuscript online:  01 December 2020
PACS:  03.50.De (Classical electromagnetism, Maxwell equations)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  Corresponding author. E-mail: shewl@mail.sysu.edu.cn   

Cite this article: 

Xing-Chu Zhang(张兴初) and Wei-Long She(佘卫龙) Discrete wavelet structure and discrete energy of classical plane light waves 2021 Chin. Phys. B 30 040301

1 Wheaton B R1983 The Tiger and the Shark-Empirical Roots of Waveparticle Dualism (Cambridge: Cambridge University Press) pp. 263-309
2 Greenstein G and Zajonc A G2005 The Quantum Challenge-Modern Research on the Foundations of Quantum (2nd edn.) (Boston: Jones and Bartlett Publishers) pp. 22-42
3 Einstein A 1905 Ann. D. Phys. 17 132
4 Aspect A and Grangier A 1987 Hyperfine Interactions 37 1
5 Dirac P A M 1927 Proc. Roy. Soc. London A 114 243
6 Gupta S N 1950 Proc. Phys. Soc. London A 63 681
7 Fermi E 1932 Rev. Mod. Phys. 4 87
8 Kidd R, Ardini J and Anton A 1989 Am. J. Phys. 57 27
9 Lewis G N 1926 Nature 118 874
10 Giese A2013 Proc. SPIE 8832 88320H
11 Demyanenko P O and Zinkovskij Y F 2009 Proc. SPIE 7421 742118
12 Mack H and Schleich W P2003 OPN trends, supplement to Optics & Photonics News 14(10): S28-S35
13 Saif S S E H, Saif M Y S, Saif A T S and Saif P S 2013 J. Am. Science 9 446
14 Zajonc A2003 OPN trends, supplement to Optics & Photonics News 14(10) S2-S5
15 Muthukrishnan A, Scully M O and Zubairy M S2003 OPN trends, supplement to Optics & Photonics News 3 S18-S27
16 Berestetskii V B, Lifshitz E M and Pitaevskii L P1982 Quantum Electrodynamics (2nd edn) (Oxford: Butterworth Heinemann) pp. 5-12
17 Berg J C V D1999 Wavelets in Physics (New York: Cambridge University Press) pp. 421-447
18 Ding L, Han B and Liu J Q 2009 Appl. Math. Mech. Engl. Ed. 30 1035
19 Rubinacci G, Tamburrino A, Ventre S and Villone F 1998 IEEE Transactions on Magnetics 34 2775
20 Ashmead J Quanta 1 58
21 Simonovski I and Boltezar M 2003 Journal of Sound and Vibration 264 545
22 Goldstein H, Poole C and Safko J2001 Classical Mechanics (3rd edn) pp. 378-380
23 Planck M 1901 Ann. Phys. 4 553
24 Millikan R A 1916 Phys. Rev. 7 355
25 Tonomura A, Endo J, Matsuta T, Kawasaki T and Ezawa H 1989 Am. J. Phys. 57 117
[1] Phase escape of current-biased Josephson junctions
Cao Wen-Hui(曹文会), Yu Hai-Feng(于海峰), Tian Ye(田野), Chen Geng-Hua(陈赓华), and Zhao Shi-Ping(赵士平). Chin. Phys. B, 2010, 19(6): 067401.
No Suggested Reading articles found!