Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 024101    DOI: 10.1088/1674-1056/19/2/024101
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface

Xie Tao(谢涛)a), He Chao(何超)a), William Perrieb), Kuang Hai-Lan(旷海兰)a), Zou Guang-Hui(邹光辉)a), and Chen Wei(陈伟)a)
a School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China; b Bedford Institute of Oceanography, B2Y 4A2, Dartmouth, NS, Canada
Abstract  In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.
Keywords:  fractals      nonlinearities      sea surface electromagnetic scattering  
Received:  14 May 2009      Revised:  03 July 2009      Accepted manuscript online: 
PACS:  92.10.Fj (Upper ocean and mixed layer processes)  
  92.10.Hm (Ocean waves and oscillations)  
  91.50.Iv (Marine magnetics and electromagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~40706058), the National High Technology Research and Development Program of China (Grant No.~2007AA12Z170), the Science-Technology Chenguang Foundation for Young Scientist of Wuhan, China (Grant No.~200850731388) and the wind and waves component of the Canadian Space Agency GRIP Project entitled Building Satellite Data into Fisheries and Oceans Operational Systems.

Cite this article: 

Xie Tao(谢涛), He Chao(何超), William Perrie, Kuang Hai-Lan(旷海兰), Zou Guang-Hui(邹光辉), and Chen Wei(陈伟) Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface 2010 Chin. Phys. B 19 024101

[1] Mandelbrot B B 1977 Fractals: Form, Chance and Dimension (San Francisco: Freeman)
[2] Mandelbrot B B 1983 The Fractal Geometry of Nature (San Francisco: Freeman)
[3] Jaggard D L and Sun X 1990 J. Opt. Soc. Am. A 7 1131
[4] Jordan D L, Holins R C and Jakeman E 1983 Appl. Phys. B 31 179
[5] Xie T, Li B H, Chen W J and He Y J 2004 IGARSS'04 IV 2776
[6] Guo L X, Wang Y H and Wu Z S 2005 Acta Phys. Sin. 545130 (in Chinese)
[7] Berizzi F, Mese E D and Pinelli G 1999 IEE Proc. Radar, Sonar Navig. 146 55
[8] Berizzi F and Mese E D 2002 IEEE Trans. Antennas Propag. 50 426
[9] Berizzi F, Mese E D and Martorelia M 2003 Int. J. Remote Sensing 25 1265
[10] Ren X C and Guo L X 2008 Chin. Phys. B 17 2491
[11] Ren X C and Guo L X 2008 Chin. Phys. B 17 2956
[12] Iodice A 2004 IEEE Trans. Geosci. Remote Sensing 42 77
[13] Guo L X and Wu Z S 2000 Electr. Lett. 36 1810
[14] Franceschetti G, Iodice A, Riccio D and Ruello G 2005 IEEETrans Geosci. Remote Sensing 4 3 1115
[15] Longuet--Higgins M S and Stewart R W 1960 J. Fluid Mech. 8 565
[16] He Y J and Alpers W 2003 J. Geophys. Res. 108 3205
[17] Guo L X, Wang Y H and Wu Z S 2008 Acta Phys. Sin. 57 3464 (in Chinese)
[18] Rozenberg A D, Quigley D C and Melville W K 1995 IEEE Trans. Geosci. RemoteSensing 3 3 1037
[19] Walker D 2000 IEEE Proc. Radar. Sonar Navig. 147 114
[20] Xie T, Zou G H, William P, Kuang H L and ChenW 2010 Chin. Phys. B 19 (in press)
[21] Toporkov J V and Brown G 2000 IEEE Trans. Geosci. Remote Sensing 38 1616
[22] Lo E and Chiang C M 1985 J. Fluid Mech. 150 395
[1] Universal quantum computation using all-optical hybrid encoding
Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2015, 24(4): 040303.
[2] Optical nonlinearity measurement of 4-(N-methyl, N-hydroxyethl)amino, 4'-nitroazobenzene using a transmittance technique with a phase object (T-PO) with top-hat beams at 600-nm wavelength
Jin Xiao (金肖), Li Zhong-Guo (李中国), Zhang Xue-Ru (张学如), Yang Kun (杨昆), Wang Yu-Xiao (王玉晓), Song Ying-Lin (宋瑛林). Chin. Phys. B, 2012, 21(10): 104201.
[3] Relationships of exponents in multifractal detrended fluctuation analysis and conventional multifractal analysis
Zhou Yu(周煜), Leung Yee(梁怡), and Yu Zu-Guo(喻祖国) . Chin. Phys. B, 2011, 20(9): 090507.
[4] Implementation of nonlocal Bell-state measurement and quantum information transfer with weak Kerr nonlinearity
Bai Juan(白娟), Guo Qi(郭奇), Cheng Liu-Yong(程留永), Shao Xiao-Qiang(邵晓强), Wang Hong-Fu(王洪福), Zhang Shou(张寿), and Yeon Kyu-Hwang . Chin. Phys. B, 2011, 20(12): 120307.
[5] Electromagnetic backscattering from freak waves in (1+1)-dimensional deep-water
Xie Tao(谢涛), Shen Tao(沈涛), William Perrie, Chen Wei(陈伟), and Kuang Hai-Lan(旷海兰). Chin. Phys. B, 2010, 19(5): 054102.
[6] Solutions to the equations describing materials with competing quadratic and cubic nonlinearities
Zhao Li-Na(赵丽娜), Tong Zi-Shuang(童子双), and Lin Ji(林机). Chin. Phys. B, 2009, 18(6): 2352-2358.
[7] Multi-fractal analysis of highway traffic data
Shang Peng-Jian(商朋见) and Shen Jin-Sheng(申金升). Chin. Phys. B, 2007, 16(2): 365-373.
[8] Nonlinear optical properties of Au/PVP composite thin films
Shen Hong (沈鸿), Cheng Bo-Lin (程波林), Lü Guo-Wei (吕国伟), Wang Wei-Tian (王伟田), Guan Dong-Yi (关东仪), Chen Zheng-Hao (陈正豪), Yang Guo-Zhen (杨国桢). Chin. Phys. B, 2005, 14(9): 1915-1918.
No Suggested Reading articles found!