PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility |
Xiao-Guang Wang(王小光)1, Shun-Kai Sun(孙顺凯)1, De-Long Xiao(肖德龙)1, Guan-Qiong Wang(王冠琼)1, Yang Zhang(张扬)1, Shao-Tong Zhou(周少彤)2, Xiao-Dong Ren(任晓东)2, Qiang Xu(徐强)2, Xian-Bin Huang(黄显宾)2, Ning Ding(丁宁)1, Xiao-Jian Shu(束小建)1 |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China |
|
|
Abstract The thin aluminum liners with an aspect ratio R/Δr<<1 have been imploded on the primary test stand (PTS) facility, where R is the outer radius of the liner and Δr is the thickness. The x-ray self-emission images present azimuthally correlated perturbations in the liner implosions. The experiments show that at -10 ns before the stagnation, the wavelengths of perturbation are about 0.93 mm and 1.67 mm for the small-radius and large-radius liners, respectively. We have utilized the resistive magnetohydrodynamic code PLUTO to study the development of magneto-Rayleigh-Taylor (MRT) instabilities under experimental conditions. The calculated perturbation amplitudes are consistent with the experimental observations very well. We have found that both mode coupling and long implosion distance are responsible for the more developed instabilities in the large-radius liner implosions.
|
Received: 08 October 2018
Revised: 07 January 2019
Accepted manuscript online:
|
PACS:
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
52.35.-g
|
(Waves, oscillations, and instabilities in plasmas and intense beams)
|
|
52.58.Lq
|
(Z-pinches, plasma focus, and other pinch devices)
|
|
52.65.Kj
|
(Magnetohydrodynamic and fluid equation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11605013, 11775032, 11805019, and 11705013). |
Corresponding Authors:
De-Long Xiao
E-mail: xiao_delong@iapcm.ac.cn
|
Cite this article:
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建) Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility 2019 Chin. Phys. B 28 035201
|
[1] |
Douglas M R, De Groot J S and Spielman R B 2001 Laser Part. Beams 19 527
|
[2] |
Peterson D L, Bowers R L, Brownell J H, Greene A E, McLenithan K D, Oliphant T A, Roderick N F and Scannapieco A J 1996 Phys. Plasmas 3 368
|
[3] |
Haines M G 2011 Plasma Phys. Control. Fusion 53 093001
|
[4] |
Ryutov D D, Derzon M S and Matzen M K 2000 Rev. Mod. Phys. 72 167
|
[5] |
Sharp D H 1984 Phys. D: Nonlinear Phenom. 12 3
|
[6] |
Miles A R 2009 Phys. Plasmas 16 032702
|
[7] |
Weis M R, Zhang P, Lau Y Y, Schmit P F, Peterson K J, Hess M and Gilgenbach R M 2015 Phys. Plasmas 22 032706
|
[8] |
Ivanov V V, Sotnikov V I, Sarkisov G, Astanovitskiy A L, Laca P J, Cowan T E, Jones B, Deeney C, Oliver B V, Mehlhorn T A and Leboeuf J N G 2007 IEEE Trans. Plasma Sci. 35 1170
|
[9] |
Ivanov V V, Chittenden J P, Altemara S D, Niasse N, Hakel P, Mancini R C, Papp D and Anderson A A 2011 Phys. Rev. Lett. 107 165002
|
[10] |
Chittenden J P and Jennings C A 2008 Phys. Rev. Lett. 101 055005
|
[11] |
Sun Y B and Piriz A R 2014 Phys. Plasmas 21 072708
|
[12] |
Huang B, Tomizuka T, Xie B, Sakai Y, Zhu Q, Song I, Okino A, Xiao F, Watanabe M and Hotta E 2013 Phys. Plasmas 20 112113
|
[13] |
Zhang P, Lau Y Y, Rittersdorf I M, Weis M R, Gilgenbach R M, Chalenski D and Slutz S A 2012 Phys. Plasmas 19 022703
|
[14] |
Lau Y Y, Zier J C, Rittersdorf I M, Weis M R and Gilgenbach R M 2011 Phys. Rev. E 83 066405
|
[15] |
Zhang Y and Ding N 2008 Chin. Phys. B 17 2994
|
[16] |
Volkov N B, Golub T A, Spielman R B and Gondarenko N A 2001 Laser Part. Beams 19 451
|
[17] |
Baksht R B, Fedunin A V, Labetsky A Y, Russkikh A G, Shishlov A V, Diyankov O V, Glazyrin I V and Koshelev S V 1998 IEEE Trans. Plasma Sci. 26 1259
|
[18] |
Hammer J H, Eddleman J L, Springer P T, Tabak M, Toor A, Wong K L, Zimmerman G B, Deeney C, Humphreys R, Nash T J, Sanford T W L, Spielman R B and DeGroot J S 1996 Phys. Plasmas 3 2063
|
[19] |
Ding N, Zhang Y, Xiao D, Wu J, Dai Z, Yin L, Gao Z, Sun S, Xue C, Ning C, Shu X and Wang J 2016 Matter Radiat. At. Extremes 1 135
|
[20] |
Weinwurm M, Bland S N and Chittenden J P 2013 Phys. Plasmas 20 092701
|
[21] |
Peterson D L, Bowers R L, Matuska W, McLenithan K D, Chandler G A, Deeney C, Derzon M S, Douglas M, Matzen M K, Nash T J, Spielman R B, Struve K W, Stygar W A and Roderick N F 1999 Phys. Plasmas 6 2178
|
[22] |
Chittenden J P, Lebedev S V, Jennings C A, Bland S N and Ciardi A 2004 Plasma Phys. Control. Fusion 46 B457
|
[23] |
Nash T, Deeney C, Chandler G A, Sinars D B, Cuneo M E and Waisman E M 2004 Phys. Plasmas 11 L65
|
[24] |
Zier J C, Gilgenbach R M, Chalenski D A, Lau Y Y, French D M, Gomez M R, Patel S G, Rittersdorf I M, Steiner A M, Weis M, Zhang P, Mazarakis M, Cuneo M E and Lopez M 2012 Phys. Plasmas 19 032701
|
[25] |
Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J and Cuneo M E 2010 Phys. Plasmas 17 056303
|
[26] |
Slutz S A and Vesey R A 2012 Phys. Rev. Lett. 108 025003
|
[27] |
Sinars D B, Slutz S A, Herrmann M C, et al. 2010 Phys. Rev. Lett. 105 185001
|
[28] |
McBride R D, Slutz S A, Jennings C A, et al. 2012 Phys. Rev. Lett. 109 135004
|
[29] |
Sinars D B, Slutz S A, Herrmann M C, et al. 2011 Phys. Plasmas 18 056301
|
[30] |
Yager-Elorriaga D A, Zhang P, Steiner A M, Jordan N M, Campbell P C, Lau Y Y and Gilgenbach R M 2016 Phys. Plasmas 23 124502
|
[31] |
Yager-Elorriaga D A, Zhang P, Steiner A M, Jordan N M, Lau Y Y and Gilgenbach R M 2016 Phys. Plasmas 23 101205
|
[32] |
Seyler C E, Martin M R and Hamlin N D 2018 Phys. Plasmas 25 062711
|
[33] |
Deng J, Xie W, Feng S, et al. 2016 Matter Radiat. At. Extremes 1 48
|
[34] |
Douglas M R, Deeney C and Roderick N F 1998 Phys. Plasmas 5 4183
|
[35] |
Ofer D, Alon U, Shvarts D, McCrory R L and Verdon C P 1996 Phys. Plasmas 3 3073
|
[36] |
Seyler C E and Martin M R 2011 Phys. Plasmas 18 012703
|
[37] |
Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C and Ferrari A 2007 Astrophys. J. Suppl. Ser. 170 228
|
[38] |
Salzman D 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press) p. 23
|
[39] |
Ren X D, Huang X B, Zhou S T, Zhang S Q, Dan J K, Li J, Cai H C, Wang K L, Ouyang K, Xu Q, Duan S C, Chen G H, Wang M, Feng S P, Yang L B, Xie W P and Deng J J 2014 AIP Conf. Proc. 1639 142
|
[40] |
Haan S W 1991 Phys. Fluids B: Plasma Phys. 3 2349
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|