Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游)1,2, Wudi Zheng(郑无敌)2, Xin Li(李欣)2
1 School of Science, Chongqing University of Technology, Chongqing 400054, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
We have investigated the flux symmetry on the capsule in a six-cylinder-port hohlraum for improving the design of the hohlraum. The influence factors of drive symmetry on the capsule in the hohlraum are studied, including laser power, laser beams arrangement, hohlraum geometric parameters, plasma condition, capsule convergence, etc. The x-ray radiation flux distribution on the capsule is obtained based on the three-dimensional view factor model. In the six-cylinder-port hohlraum, the main drive asymmetry is the C40 mode asymmetry. When the C40 mode asymmetry approaches zero, the drive symmetry on the capsule is optimal. Our results demonstrate that in order to have a high flux symmetry on the capsule in the laser main-pulse stage, more negative initial C40 modes are needed, which can be realized by adjusting the hohlraum geometry parameters. The hohlraum with column length LH=4.81 mm has an optimal symmetry in the laser main-pulse stage.
(Laser light absorption in plasmas (collisional, parametric, etc.))
Fund:
Project supported by the National Natural Science Foundation of China (Grant No. 11705010) and China Postdoctoral Science Foundation (Grant No. 2017M610821).
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣) Influence analysis of symmetry on capsule in six-cylinder-port hohlraum 2019 Chin. Phys. B 28 035203
[1]
Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 2 3933
[2]
Moody J D, Callahan D A, Hinkel D E, et al. 2014 Phys. Plasmas 21 056317
[3]
Lan K, Liu J, Lai D X, Zheng W D and He X T 2014 Phys. Plasmas 21 010704
[4]
Lan K, He X T, Liu J, Zheng W D and Lai D X 2014 Phys. Plasmas 21 052704
[5]
Lan K and Zheng W D 2014 Phys. Plasmas 21 090704
[6]
Li X, Wu C S, Dai Z S, Zheng W D, Gu J F, Gu P J, Zou S Y, Liu J and Zhu S P 2016 Chin. Phys. B 25 085202
[7]
Li X, Wu C S, Dai Z S, Zheng W D, Zhao Y Q, Zhang H S, Gu J F, Ge F G, Gu P J and Zou S Y 2016 arXiv:1608.02167 [plasm-ph]
[8]
Lindl J D 1995 Phys. Plasmas 2 3933
[9]
Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[10]
Hauer A A, Suter L, Delamater N, et al. 1995 Phys. Plasmas 2 2488
[11]
Duan H, Wu C S, Pei W B and Zou S Y 2015 Phys. Plasmas 22 092704
[12]
Huo W Y, Liu J, Zhao Y Q, Zheng W D and Lan K 2014 Phys. Plasmas 21 114503
[13]
Duan H, Wu C S, Pei W B and Zou S Y 2016 Phys. Plasmas 23 052703
[14]
Haan S W, Lindl J D, Callanhan D A, et al. 2011 Phys. Plasmas 18 051001
[15]
Michel P, Divol L, Williams E A, Weber S, Thomas C A, Callahan D A, Haan S W, Salmonson J D, Dixit S, Hinkel D E, Edwards M J, Mac-Gowan B J, Lindl J D, Glenzer S H and Suter L J 2009 Phys. Rev. Lett. 102 025004
[16]
Glenzer S H, MacGowan B J, Michel P, et al. 2010 Science 327 1228
[17]
Michel P, Divol L, Town R P J, et al. 2011 Phys. Rev. E 83 046409
[18]
Moody J D, Robey H F, Celliers P M, Munro D H, Barker D A, Baker K L, Döppner T, Hash N L, Hopkins L B and Lafortune K 2014 Phys. Plasmas 21 092702
[19]
Kuang L Y, Li H, Jing L F, Lin Z W, Zhang L, Li L L, Ding Y K, Jiang S E, Liu J and Zheng J 2016 Scientific Reports 6 34636
[20]
Cohen D H, Landen O L and MacFarlane J J 2005 Phys. Plasmas 12 122703
[21]
Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford Science Press)
[1]
A simple analytical model of laser direct-drive thin shell target implosion Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚). Chin. Phys. B, 2022, 31(4): 045204.
[2]
Hot-electron deposition and implosion mechanisms within electron shock ignition Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.