Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 030501    DOI: 10.1088/1674-1056/28/3/030501
GENERAL Prev   Next  

Energy-optimal problem of multiple nonholonomic wheeled mobile robots via distributed event-triggered optimization algorithm

Ying-Wen Zhang(张潆文)1, Jin-Huan Wang(王金环)1, Yong Xu(徐勇)1, De-Dong Yang(杨德东)2
1 School of Science, Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, Tianjin 300401, China;
2 School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
Abstract  

The distributed event-triggered optimization problem for multiple nonholonomic robots has been studied to minimize the global battery energy consumption. Each robot possesses its own cost function which depends on the state of the hand position and represents battery energy consumption. By coordinate transformation, the dynamics of the hand positions can be formulated into two groups of first-order integrators. Then the distributed event-triggered optimization algorithm is designed such that the states of robots' hand positions exponentially converge to the optimizer of the global cost function. Meanwhile, the velocity and orientation of each robot are ensured to reach zero and a certain constant, respectively. Moreover, the inter-execution time is lower bounded and the Zeno behavior is therefore naturally avoided. Numerical simulations show the effectiveness of the proposed algorithm.

Keywords:  distributed optimization      nonholonomic robots      event-triggered      energy-optimal      consensus  
Received:  13 November 2018      Revised:  18 December 2018      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
  45.40.Ln (Robotics)  
  02.30.Yy (Control theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11701138) and the Natural Science Foundation of Hebei Province, China (Grant Nos. F2017202009 and F2018202075).

Corresponding Authors:  Jin-Huan Wang     E-mail:  wjhuan228@163.com

Cite this article: 

Ying-Wen Zhang(张潆文), Jin-Huan Wang(王金环), Yong Xu(徐勇), De-Dong Yang(杨德东) Energy-optimal problem of multiple nonholonomic wheeled mobile robots via distributed event-triggered optimization algorithm 2019 Chin. Phys. B 28 030501

[1] Angie S, Farokh B B and Yen I L 2011 10th International Symposium on Autonomous Decentralized Systems, March 23-27, 2011 Tokyo, Hiroshima, Japan, p. 147
[2] Jaleel H, Rahmani A and Egerstedt M 2013 IEEE Trans. Autom. Control 58 534
[3] Wang G Q, Luo H and Hu X X 2018 Chin. Phys. B 27 028901
[4] Hao X C, Liu J S, Xie L X, Chen B and Yan N 2018 Chin. Phys. B 27 080102
[5] Alfieri A, Bianco A, Brandimarte P and Chiasserini C F 2007 Eur. J. Oper. Res. 181 390
[6] Tokekar P, Karnad N and Isler V 2011 IEEE International Conference on Robotics and Automation May 9-13, 2011 Shanghai, China, p. 1457
[7] Setter T and Egerstedt M 2017 IEEE Trans. Control Syst. Technol. 25 1257
[8] Nedic A and Ozdaglar A 2009 IEEE Trans. Autom. Control 54 48
[9] Qiu Z R, Liu S and Xie L H 2016 Automatica 68 209
[10] Xi C G and Khan U A 2017 IEEE Trans. Autom. Control 62 3986
[11] Yi P, Hong Y G and Liu F 2015 Syst. Control Lett. 83 45
[12] Lin P, Ren W and Farrel J A 2017 IEEE Trans. Autom. Control 62 2239
[13] Wang A J, Liao X F and Dong T 2018 IET Control Theory Appl. 12 1515
[14] Hale M T, Nedic A and Egerstedt M 2017 IEEE Trans. Autom. Control 62 4421
[15] Liu P, Li H Q and Dai X G 2018 Int. J. Syst. Sci. 49 1256
[16] Rahili S and Ren W 2017 IEEE Trans. Autom. Control 62 1590
[17] Liu J Y, Chen W S and Dai H 2017 Int. J. Syst. Sci. 48 1836
[18] Guo Z J and Chen G 2018 Int. J. Robust Nonlinear Control 28 4900
[19] Wang J H, Xu Y L, Zhang J and Yang D D 2018 Chin. Phys. B 27 040504
[20] Cao J, Wu Z H and Peng L 2016 Chin. Phys. B 25 058902
[21] Miao G Y, Cao J D and Alsaedi A 2017 J. Frankl. Inst. 354 6956
[22] Qi B, Cui B T and Lou X Y 2014 Chin. Phys. B 23 110501
[23] Lü Q G, Li H Q and Xia D W 2017 Neurocomputing 235 255
[24] Kia S S, Cortes J and Martinez S 2015 Automatica 55 254
[25] Chen W S and Ren W 2016 Automatica 65 90
[26] Liu J Y, Chen W S and Dai H 2016 Int. J. Control Autom. Syst. 14 1421
[27] Liu S, Xie L H and Quevedo D E 2018 IEEE Trans. Control Network Syst. 5 167
[28] Richert D and Cortes J 2016 SIAM J. Control Optim. 54 1769
[29] Wang D, Gupta V and Wang W 2018 Neurocomputing 319 34
[30] Godsil C and Royle G 2001 Algebraic Graph Theory (New York: Springer-Verlag)
[31] Lawton J, Beard R and Young B 2003 IEEE Trans. Robot. Autom. 19 933
[32] Chen X, Hao F and Ma B L 2017 IET Control Theory Appl. 11 890
[33] Horn R A and Johnson C R 2003 Matrix Analysis (Cambridge: Cambridge University Press)
[34] Yan J X, Yu H and Xia X H 2018 Neurcomputing 296 100
[35] Bertsekas D P, Nedic A and Ozdaglar A E 2003 Convex Analysis and Optimization (Belmont: Athena Scientific)
[1] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies
Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良). Chin. Phys. B, 2021, 30(12): 120507.
[5] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[6] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[7] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[8] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[9] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[10] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[11] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[12] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[13] Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays
Zhe-Ping Yan(严浙平), Yi-Bo Liu(刘一博), Jia-Jia Zhou(周佳加), Wei Zhang(张伟), Lu Wang(王璐). Chin. Phys. B, 2017, 26(4): 040203.
[14] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[15] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
No Suggested Reading articles found!