PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Coherent nonlinear structures in dense electron-positron plasma |
S. A. Khana, Z. Wazirb |
a National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan; b Department of Physics, International Islamic University, Islamabad, Pakistan |
|
|
Abstract It is shown that the rarefactive-type double layer structures exist in ultradense electron-positron plasma. For this purpose, an extended Korteweg de Vries equation is derived and solved analytically in low amplitude limit by employing the appropriate fluid equations. Strong influence of quantum degeneracy pressure of electrons and positrons, quantum diffraction effects and concentration of background positive ions on double layer is noticed. It is also pointed out that the amplitude and steepness of double layer increases with increase in ion concentration or ion charge number. The results are examined numerically for some interesting cases of dense plasmas with illustrations.
|
Received: 30 March 2012
Revised: 07 August 2012
Accepted manuscript online:
|
PACS:
|
52.27.-h
|
(Basic studies of specific kinds of plasmas)
|
|
52.27.Ep
|
(Electron-positron plasmas)
|
|
52.35.Fp
|
(Electrostatic waves and oscillations (e.g., ion-acoustic waves))
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
Corresponding Authors:
S. A. Khan
E-mail: sakhan@ncp.edu.pk
|
Cite this article:
S. A. Khan, Z. Wazir Coherent nonlinear structures in dense electron-positron plasma 2013 Chin. Phys. B 22 025201
|
[1] |
Bonitz M, Filinov A and Böning J 2010 Introduction to Quantum Plasmas, in: Introduction to Complex Plasmas eds. Bonitz M, Horing N, Meichsner J and Ludwig P (Berlin: Sringer)
|
[2] |
Shukla P K and Eliasson B 2011 Rev. Mod. Phys. 83 885
|
[3] |
Chndrasekhar S 1939 An Introduction to the Study of Stellar Structure (Chicago: The University of Chicago Press)
|
[4] |
Shapiro S L and Teukolsky S A 2004 Black Holes, White Dwarfs, and Neutron Stars-The Physics of Compact Objects (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA)
|
[5] |
Potekhin A Y, Baiko D A, Haensel P and Yakovlev D G 1999 Astron. & Astrophys. 346 345
|
[6] |
Lai D 2001 Rev. Mod. Phys. 73 629
|
[7] |
Balberg S and Shapiro S L 2000 The Properties of Condensed Matter in White Dwarfs and Neutron Stars, ed. Levy M (London: Academic Press)
|
[8] |
Koester D and Chanmugam G 1990 Rep. Prog. Phys. 53 837
|
[9] |
Manfredi G 2005 Fields Inst. Commun. 46 263
|
[10] |
Shukla P K and Eliasson B 2007 Phys. Rev. Lett. 99 096401
|
[11] |
Haas F 2005 Phys. Plasmas 12 062117
|
[12] |
Khan S A and Saleem H 2009 Phys. Plasmas 16 052109
|
[13] |
Haas F, Garcia L G, Goedert J and Manfredi G 2003 Phys. Plasmas 10 3858
|
[14] |
Manfredi G and Haas F 2001 Phys. Rev. B 64 075316
|
[15] |
Stenflo L, Shukla P K, and Marklund M 2006 Europhys. Lett. 74 844
|
[16] |
Yang S F, Wang S J, Chen J M, Shi Y R, Lin M M and Duan W S 2012 Chin. Phys. B 21 055202
|
[17] |
Khan S A, Mahmood S and Mirza M Arshad 2009 Chin. Phys. Lett. 26 045203
|
[18] |
Han J N, Luo J H, Son G H, Liu Z L and Li S Y 2011 Chin. Phys. B 20 025202
|
[19] |
Misra A P and Samanta S 2010 Phys. Rev. E 82 037401
|
[20] |
Shukla P K and Eliasson B 2010 Phys. Usp. 53 51
|
[21] |
Markowich A, Ringhofer R and Schmeiser C 1990 Semiconductor Equations (Vienna: Springer)
|
[22] |
Crouseilles N N, Hervieux P A and Manfredi G 2008 Phys. Rev. B 78 155412
|
[23] |
Wei L and Wang Y N 2007 Phys. Rev. B 75 193407
|
[24] |
Marklund M, Brodin G, Stenflo L and Liu C S 2008 Europhys. Lett. 84 17006
|
[25] |
Hairapetian G and Stenzel R L 1990 Phys. Rev. Lett. 65 175
|
[26] |
Lieberman M A and Charles C 2006 Phys. Rev. Lett. 97 045003
|
[27] |
Singh N 1982 Plasma Phys. 24 639
|
[28] |
Moslem W M, Shukla P K, Ali S and Schlickeiser R 2007 Phys. Plasmas 14 042107
|
[29] |
Khan S A, Mahmood S and Ali S 2009 Phys. Plasmas 16 044505
|
[30] |
Rees M J 1983 The Very Early Universe, eds. Gibbons G W, Hawking S W and Siklas S (Cambridge: Cambridge University Press)
|
[31] |
Burns M L 1983 Positron-Electron Pairs in Astrophysics (New York: American Institute of Physics)
|
[32] |
Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L and Bell A R 2012 Phys. Rev. Lett. 108 165006
|
[33] |
Yang Z J. Cheng X l, Zhu Z H and Yang X D 2012 Chin. Phys. B 21 023401
|
[34] |
Surko C M and Murphy T J 1990 Phys. Fluids B 2 1372
|
[35] |
Ali S, Moslem W M, Shukla P K and Schlickeiser R 2007 Phys. Plasmas 14 082307
|
[36] |
Berezhiani V I, Tskhakaya D D and Shukla P K 1992 Phys. Rev. A 46 6608
|
[37] |
Svensson R 1982 Astrophys. 258 335
|
[38] |
Chandrasekhar S 1935 Mon. Not. R. Astron. Soc. 95 676
|
[39] |
Zank G P and Greaves R G 1995 Phys. Rev. E 51 6079
|
[40] |
Some recent observations, e.g., in http://www.astronomy.com/asy/default.aspx?c=a&id=6442
|
[41] |
Beskin V S 1993 Contemp. Phys. 34 131
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|