ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spatial chirp in Ti:sapphire multipass amplifier |
Wenkai Li(黎文开)1,2, Jun Lu(陆俊)1,2, Yanyan Li(李妍妍)1, Xiaoyang Guo(郭晓杨)1,3, Fenxiang Wu(吴分翔)1,2, Linpeng Yu(於林鹏)1,2, Pengfei Wang(王朋飞)1,2, Yi Xu(许毅)1, Yuxin Leng(冷雨欣)1 |
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan |
|
|
Abstract The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the one-dimensional (1D) and two-dimensional (2D) Frantz-Nodvik equations. The simulation indicates that the spatial chirp is induced by the spatially inhomogeneous gain, and it can be almost eliminated by utilization of proper beam profiles and spot sizes of the signal and pump pulses, for example, the pump pulse has a top-hatted beam profile and the signal pulse has a super-Gaussian beam profile with a relatively larger spot size. In this way, a clear understanding of spatial chirp mechanisms in the Ti:sapphire multipass amplifier is proposed, therefore we can effectively almost eliminate the spatial chirp and improve the beam quality of a high-power Ti:sapphire chirped pulse amplifier system.
|
Received: 07 November 2016
Revised: 09 December 2016
Accepted manuscript online:
|
PACS:
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
79.20.Ds
|
(Laser-beam impact phenomena)
|
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
Fund: Project supported by 100 Talents Program of Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 61475169, 61521093, and 11127901), and the Youth Innovation Promotion Association of Chinese Academy of Sciences. |
Corresponding Authors:
Yi Xu, Yuxin Leng
E-mail: xuyi@.siom.ac.cn;lengyuxin@mail.siom.ac.cn
|
Cite this article:
Wenkai Li(黎文开), Jun Lu(陆俊), Yanyan Li(李妍妍), Xiaoyang Guo(郭晓杨), Fenxiang Wu(吴分翔), Linpeng Yu(於林鹏), Pengfei Wang(王朋飞), Yi Xu(许毅), Yuxin Leng(冷雨欣) Spatial chirp in Ti:sapphire multipass amplifier 2017 Chin. Phys. B 26 034206
|
[1] |
Yu T J, Lee S K, Sung J H, Yoon J W, Jeong T M and Lee J 2012 Opt. Express 20 10807
|
[2] |
Kalashnikov M, Cao H, Osvay K and Chvykov V 2016 Opt. Lett. 41 25
|
[3] |
Le Blanc C, Grillon G, Chambaret J P, Migus A and Antonetti A 1993 Opt. Lett. 18 140
|
[4] |
Yu L H, Liang X Y, Ren Z J, Wang L, Xu Y, Lu X M and Yu G H 2012 Chin. Phys. B 21 014201
|
[5] |
Danson C N, Brummitt P A, Clarke R J, et al. 2005 Laser and Particle Beams 23 87
|
[6] |
Bahk S W, Rousseau P, Planchon T A, Chvykov V, Kalintchenko G, Maksimchuk A, Mourou G A and Yanovsky V 2004 Opt. Lett. 29 2837
|
[7] |
Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W and Habs D 2009 Phys. Rev. Lett. 103 245003
|
[8] |
Kmetec J D, Gordon C L, Macklin J J, Lemoff B E, Brown G S and Harris S E 1992 Phys. Rev. Lett. 68 1527
|
[9] |
Monot P, Auguste T, Gibbon P, Jakober F, Mainfray G, Dulieu A, Louis-Jacquet M, Malka G and Miquel J L 1995 Phys. Rev. Lett. 74 2953
|
[10] |
Luo Q, Liu W and Chin S L 2003 Appl. Phys. B 76 337
|
[11] |
Liu Y, Sun H, Ju J, Tian Y, Bai Y, Wang C, Wang T, Liu J, Chin S L and Li R 2016 Chin. Opt. Lett. 14 031401
|
[12] |
Liang H, Sun H, Liu Y, Tian Y, Ju J, Wang C and Liu J 2015 Chin. Opt. Lett. 13 033201
|
[13] |
Giambruno F, Radier C, Rey G and Chériaux G 2011 Appl. Opt. 50 2617
|
[14] |
Khazanov E A and Sergeev A M 2007 Laser Physics 17 1398
|
[15] |
Walter D, Eyring S, Lohbreier J, Spitzenpfeil R and Spielmann C 2007 Appl. Phys. B 88 175
|
[16] |
Kitagawa Y, Fujita H, Kodama R, Yoshida H, Matsuo S, Jitsuno T, Kawasaki T, Kitamura H, Kanabe T, Sakabe S, Shigemori K, Miyanaga N and Izawa Y 2004 IEEE Journal of Quantum Electronics 40 281
|
[17] |
Akturk S, Gu X, Zeek E and Trebino R 2004 Opt. Express 12 4399
|
[18] |
Gu X, Akturk S and Trebino R 2004 Opt. Commun. 242 599
|
[19] |
Frantz L M and Nodvik J S 1963 J. Appl. Phys. 34 2346
|
[20] |
Planchon T A, Burgy F, Rousseau J P and Chambaret J P 2005 Appl. Phys. B 80 661
|
[21] |
Cha Y H, Kang Y I and Nam C H 1999 J. Opt. Soc. Am. B 16 1220
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|