CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Operation of Kerr-lens mode-locked Ti:sapphire laser in the non-soliton regime |
Liu Hua-Gang(刘华刚), Hu Ming-Lie(胡明列)†, Song You-Jian(宋有建), Li Yan-Feng (栗岩峰), Chai Lu(柴路), and Wang Ching-Yue(王清月) |
Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information and Technical Science, Tianjin University, Tianjin 300072, China |
|
|
Abstract A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The characteristics of the Ti:sapphire laser operating in a positive dispersion regime are presented, where the oscillator directly generates pulses with duration continuously tunable from 0.37 ps to 2.11 ps, and 36 fs pulses are achieved after extracavity compression. The oscillation is numerically simulated with an extended nonlinear Schr?dinger equation, and the simulation results are in good agreement with the experimental results.
|
Received: 24 February 2009
Revised: 01 June 2009
Accepted manuscript online:
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Hw
|
(Phase conjugation; photorefractive and Kerr effects)
|
|
Fund: Project supported by the National
Basic Research Program of China (Grant No. 2006CB806002), the
National High Technology Research and Development Program of China
(Grant No. 2007AA03Z447), National Natural Science Foundation of
China (Grant Nos. 60678012 and 60838004), the Foundation for Key
Program of Ministry of Education, China (Grant No. 108032), and
FANEDD (Grant No. 2007B34), and NCET (Grant No. NCET-07-0597). |
Cite this article:
Liu Hua-Gang(刘华刚), Hu Ming-Lie(胡明列), Song You-Jian(宋有建), Li Yan-Feng (栗岩峰), Chai Lu(柴路), and Wang Ching-Yue(王清月) Operation of Kerr-lens mode-locked Ti:sapphire laser in the non-soliton regime 2010 Chin. Phys. B 19 014215
|
[1] |
Spence D E, Kean P N and Sibbett W 1991 Opt. Lett. 16 42
|
[2] |
Xu L, Tempea G, Poppe A, Lenzner M, Spielman C, Krausz F, Stingl A and Ferencz K 1997 Appl. Phys. B 65 151
|
[3] |
Ell R, Morgner U, K?rtner F X, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T, Lederer M J, Boiko A and Luther-Davies B 2001 Opt. Lett. 26 373
|
[4] |
Sutter D H, Steinmeyer G, Gallmann L, Matuschek N, Morier-Genoud F, Keller U, Angelow V G and Tschudi T 1999 Opt. Lett. 24 631
|
[5] |
Chen Y, K?rtner F X, Morgner U, Cho S H, Haus H A, Ippen E P and Fujimoto J G 1999 J. Opt. Soc. Am. B 16 1999
|
[6] |
Spielmann C, Curley P F, Brabec T and Krausz F 1994 IEEE J. Quantum Electron. 30 1100
|
[7] |
Wang Y S, Liu H J, Cheng Z, Zhao W, Wang Y G, Ma X Yu and Zhang Z G 2005 Acta Phys. Sin. 54 5184 (in Chinese)
|
[8] |
Liao R, Wen J H, Liu Z G, Deng L, Zhang H C, Lai T S and Lin W Z 2002 Chin. Sci. Bull. 47 345 (in Chinese)
|
[9] |
Tian J R, Han H N, ZhaoY Y, Wang P, Zhang W and Wei Z Y 2006 Acta Phys. Sin. 55 4725 (in Chinese)
|
[10] |
Xie X D, Wang Q Y, Wang Z, Zhang W L and Chai L 2005 Acta Phys. Sin. 54 3159 (in Chinese)
|
[11] |
Haus H A, Fujimoto J G and Ippen E P 1991 J. Opt. Soc. Am. B 8 2068
|
[12] |
Proctor B, Westwig E and Wise F 1993 Opt. Lett. 18 1654
|
[13] |
Kalashnikov V L, Podivilov E, Chernykh A and Apolonski A 2006 Appl. Phys. B 83 503
|
[14] |
Fernandez A, Fuji T, Poppe A, Fürbach A, Krausz F and Apolonski A 2004 Opt. Lett. 29 1366
|
[15] |
Naumov S, Fernandez A, Graf R, Dombi P, Krausz F and Apolonski A 2005 New J. Phys. 7 216
|
[16] |
Herrmann J, Kalosha V P and Müller M 1997 Opt. Lett. 22 236
|
[17] |
Curley P F, Spielmann C, Brabec T, Krausz F, Wintner E and Schmidt A J 1993 Opt. Lett. 18 54
|
[18] |
Dudley J M, Boussen S M, Cameron D M J and Harvey J D 1999 Appl. Opt. 38 3308
|
[19] |
Wu J, Cai H, Han X H and Zeng H P 2008 Chin. Opt. Lett. 6 76
|
[20] |
Kalashnikov V L, Podivilov E, Chernykh A, Naumov S, Fernandez A, Graf R and Apolonski A 2005 New J. Phys. 7 217
|
[21] |
Xing Q R, Zhang W L, Lu W, Yoo K M and Lueng J 1996 Chin. Phys. 5 39
|
[22] |
Ilday F ?, Wise F W and Kaertner F X 2004 Opt. Express 12 2731
|
[23] |
Agrawal G P 2001 Applications of Nonlinear Fiber Optics (San Diego: Academic) ch.4 and 5
|
[24] |
Ilday F ?, Buckley J R, Clark W G and Wise F W 2004 Phys. Rev. Lett. 92 213902
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|