Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018201    DOI: 10.1088/1674-1056/27/1/018201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel multi-scroll chaotic generator: Analysis, simulation, and implementation

Gui-Tao Zhang(张桂韬), Fa-Qiang Wang(王发强)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Based on a new three-dimensional autonomous linear system and designing a specific form of saturated function series and a sign function with two variables of system, which are employed to increase saddle-focus equilibrium points with index 2, a novel multi-scroll chaotic system is proposed and its typical dynamical characteristics including bifurcation diagram, Poincare map, and the stability of equilibrium points are analyzed. The hardware circuit is designed and the experimental results are presented for confirmation.
Keywords:  multi-scroll chaotic system      linear system      hardware circuit  
Received:  06 August 2017      Revised:  16 October 2017      Accepted manuscript online: 
PACS:  82.40.Bj (Oscillations, chaos, and bifurcations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51377124 and 51521065), the Foundation for the Author of National Excellent Doctoral Dissertation, China (Grant No. 201337), and the New Star of Youth Science and Technology of Shaanxi Province, China (Grant No. 2016KJXX-40).
Corresponding Authors:  Fa-Qiang Wang     E-mail:  faqwang@mail.xjtu.edu.cn

Cite this article: 

Gui-Tao Zhang(张桂韬), Fa-Qiang Wang(王发强) A novel multi-scroll chaotic generator: Analysis, simulation, and implementation 2018 Chin. Phys. B 27 018201

[1] Misteli T 2008 Nature 456 333
[2] Cramer J A and Booksh K S 2006 J. Chemom. 20 447
[3] Hirata Y, Oku M and Aihara K 2012 Chaos 22 047511
[4] Murphy P 1996 Public Relat. Rev. 22 95
[5] Kerr R A 2007 Science 317 449
[6] Oxley L and George D A R 2007 Environ. Model. Softw. 22 580
[7] Lorenz E 1963 J. Atmos. Sci. 20 130
[8] Matsumoto T 1984 IEEE Trans. Circuits Syst. 31 1055
[9] Chen G and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465
[10] Lü J Chen G 2002 Int. J. Bifurc. Chaos 12 659
[11] Lü J, Chen G, Chen D and Celikovsky S 2002 Int. J.Bifurc. Chaos 12 2917
[12] Wang C H, Xu H and Yu F 2013 Int. J. Bifurc. Chaos 23 1350022
[13] Zhang CX and Yu S M 2010 Phys. Lett. A 374 3029
[14] Lü J H, Murali K, Sinha S, Leung H and Aziz-Alaoui M A 2008 Phys. Lett. A 372 3234
[15] Wang X Y, Lin D and Wang Z J 2009 Phys. Lett. B 23 2021
[16] Suykens J A K and Vandewalle J 1993 IEEE Trans. Circuits Syst. I 40 861
[17] Luo X H, Tu Z W, Liu X R, Cai C, Liang Y L and Gong P 2010 Chin. Phys. B 19 070510
[18] Tang W K S, Zhong G Q, Chen, G and Man K F 2001 IEEE Trans. Circuits Syst. I 48 1369
[19] Lü J and Chen G 2006 Int. J. Bifurc. Chaos 16 775
[20] Wang Z H, Qi G Y, Sun Y X, van Wyk B J and van Wyk M A 2010 Nonlinear Dyn. 60 443
[21] Yalcin M E, Suykens J A K, Vandewalle J and Ozoguz S 2002 Int. J. Bifurc. Chaos 12 23
[22] Lü J H, Chen G R, Yu X H and Leung H 2004 IEEE Trans. Circuits Syst. I 51 2476
[23] Lü J H, Yu S M, Leung H and Chen G R 2006 IEEE Trans. Circuits Syst. I 53 149
[24] Yu S M, Lü J H, Leung H and Chen G R 2005 IEEE Trans. Circuits Syst. I 52 1459
[25] Lü J H, Yu X H and Chen G R 2003 IEEE Trans. Circuits Syst. I 50 198
[26] Wang F Q and Liu C X 2007 Chin. Phys. 16 1009
[27] Han F, Hu J, Yu X and Wang Y 2007 Appl. Math. Comput. 185 931
[28] Tang K S, Man K F and Chen G 2001 Proc. IEEE Int. Symp. Circ. Syst. 3 787
[29] Yalcin M E 2007 Int. J. Bifurc. Chaos 17 4471
[30] Gamez-Guzman L, Cruz-Hernandez C, Lopez-Gutierrez R and Garcia-Guerrero E E 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2765
[31] Yalcin M E, Suykens J A K and Vandewalle J 2004 Proc. IEEE Int. Symp. Circ. Syst. 4 581
[1] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[2] Stability and performance analysis of a jump linear control system subject to digital upsets
Wang Rui (王蕊), Sun Hui (孙辉), Ma Zhen-Yang (马振洋). Chin. Phys. B, 2015, 24(4): 040201.
[3] Hopf bifurcation control for a coupled nonlinear relativerotation system with time-delay feedbacks
Liu Shuang (刘爽), Li Xue (李雪), Tan Shu-Xian (谈书贤), Li Hai-Bin (李海滨). Chin. Phys. B, 2014, 23(10): 104502.
[4] Asymptotic solving method for sea–air coupled oscillator ENSO model
Zhou Xian-Chun(周先春), Yao Jing-Sun(姚静荪)), and Mo Jia-Qi(莫嘉琪) . Chin. Phys. B, 2012, 21(3): 030201.
[5] Stability analysis of nonlinear Roesser-type two-dimensional systems via homogenous polynomial technique
Zhang Tie-Yan (张铁岩), Zhao Yan (赵琰), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2012, 21(12): 120503.
[6] Robust fault-sensitive synchronization of a class of nonlinear systems
Xu Shi-Yun(徐式蕴), Yang Ying(杨莹), Liu Xian(刘仙), Tang Yong(汤涌), and Sun Hua-Dong(孙华东) . Chin. Phys. B, 2011, 20(2): 020509.
[7] Effect of inertial mass on a linear system driven by dichotomous noise and a periodic signal
Li Peng(李鹏), Nie Lin-Ru(聂林如), Lü Xiu-Min(吕秀敏), and Zhang Qi-Bo(张启波) . Chin. Phys. B, 2011, 20(10): 100502.
[8] Robust H control of piecewise-linear chaotic systems with random data loss
Zhang Hong-Bin(张洪斌), Yu Yong-Bin(于永斌), and Zhang Jian(张健). Chin. Phys. B, 2010, 19(8): 080509.
[9] Implementation of a novel two-attractor grid multi-scroll chaotic system
Luo Xiao-Hua(罗小华), Tu Zheng-Wei(涂正伟), Liu Xi-Rui(刘希瑞), Cai Chang(蔡昌), Liang Yi-Long(梁亦龙), and Gong Pu(龚璞). Chin. Phys. B, 2010, 19(7): 070510.
[10] Function projective synchronization in partially linear drive–response chaotic systems
Zhang Rong(张荣) and Xu Zhen-Yuan(徐振源). Chin. Phys. B, 2010, 19(12): 120511.
[11] Adaptive generalized synchronization between Chen system and a multi-scroll chaotic system
Chen Long(谌龙), Shi Yue-Dong(史跃东), and Wang De-Shi(王德石). Chin. Phys. B, 2010, 19(10): 100503.
[12] Experiment and application of parameter-induced stochastic resonance in an over-damped random linear system
Jiang Shi-Qi(蒋世奇), Hou Min-Jie(侯敏杰), Jia Chun-Hua(贾春华), He Ji-Rong(何吉荣), and Gu Tian-Xiang(古天祥). Chin. Phys. B, 2009, 18(7): 2667-2673.
[13] Effects of time delay on stochastic resonance of a periodically driven linear system with multiplicative and periodically modulated additive white noises
Du Lu-Chun(杜鲁春) and Mei Dong-Cheng(梅冬成). Chin. Phys. B, 2009, 18(3): 946-951.
[14] Berry phase in a generalized nonlinear two-level system
Liu Ji-Bing(刘继兵), Li Jia-Hua(李家华), Song Pei-Jun(宋佩君), and Li Wei-Bin(李伟斌). Chin. Phys. B, 2008, 17(1): 38-42.
[15] Asymptotic solution of a sea--air oscillator for ENSO mechanism
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Wang Hui(王辉). Chin. Phys. B, 2007, 16(3): 578-581.
No Suggested Reading articles found!