INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Pressure-induced structural evolution of apatite-type La9.33Si6O26 |
Guangchao Yin(尹广超)1, Hong Yin(殷红)2, Meiling Sun(孙美玲)1, Wei Gao(高伟)2 |
1 Functional Molecular Materials Laboratory, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China |
|
|
Abstract The pressure-induced structural evolution of apatite-type La9.33Si6O26 was systematically studied using in situ synchrotron x-ray diffraction (XRD). The XRD spectra indicated that a subtly reversible phase transition from P63/m to P63 symmetry occurred at~13.6 GPa because of the tilting of the SiO4 tetrahedra under compression. Furthermore, the La9.33Si6O26 exhibited a higher axial compression ratio for the a-axis than the c-axis, owing to the different axial arrangement of the SiO4 tetrahedra. Interestingly, the high-pressure phase showed compressibility unusually higher than that of the initial phase, suggesting that the low P63 symmetry provided more degrees of freedom. Moreover, the La9.33Si6O26 exhibited a lower phase transition pressure (PT) and a higher lattice compression than La10Si6O27. Comparisons between La9.33Si6O26 and La10Si6O27 provided a deeper understanding of the effect of interstitial oxygen atoms on the structural evolution of apatite-type lanthanum silicates (ATLSs).
|
Received: 28 July 2017
Revised: 06 September 2017
Accepted manuscript online:
|
PACS:
|
82.45.Gj
|
(Electrolytes)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
81.40.Vw
|
(Pressure treatment)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2015AQ010 and ZR2016FB16) and the Open Project Fund of State Key Laboratory of Superhard Materials of China (Grant No. 201509). |
Corresponding Authors:
Wei Gao
E-mail: gwei@jlu.edu.cn
|
Cite this article:
Guangchao Yin(尹广超), Hong Yin(殷红), Meiling Sun(孙美玲), Wei Gao(高伟) Pressure-induced structural evolution of apatite-type La9.33Si6O26 2018 Chin. Phys. B 27 018202
|
[1] |
Ma Y, Fenineche N, Elkedim O, Liao H and Briois P 2016 Int. J. Hydrogen Energy 23 9993
|
[2] |
Dong X F, Hua G X, Dong D, Zhu W L and Wang H J 2016 J. Power Sources 306 630
|
[3] |
Dai L, Han W, Li Y H and Wang L 2016 Int. J. Hydrogen Energy 26 11340
|
[4] |
Kioupis D and Kakali G 2016 Ceramics International 8 9640
|
[5] |
Cao X G, Jiang S P and Li Y Y 2015 J. Power Sour. 293 806
|
[6] |
Xiang J, Ouyang J H and Liu Z G 2015 J. Power Sour. 284 49
|
[7] |
Hori S, Takatani Y, Kadoura H, Uyama T, Fujita S and Tan T 2015 Dalton Trans. 44 1755
|
[8] |
Li H, Baikie T, Pramana S S, Shin J F, Keenan P J, Slater P R, Brink F, Hester J, An T and White T J 2014 Inorg. Chem. 53 4803
|
[9] |
Yin G C, Yin H, Sun M L, Zhong L H, Zhang J K, Cong R D, Gao W and Cui Q L 2014 RSC Adv. 4 15968
|
[10] |
Li B Y, Liu J, Hu Y X and Huang Z X 2011 J. Alloy. Compound. 509 3172
|
[11] |
Nakayama S and Sakamoto M 2013 Solid State Ionics 253 47
|
[12] |
Santos M, Alves C, Oliveira F A C, Marcelo T, Mascarenhas J, Cavaleiro A and Trindade B 2013 J. Power Sour. 231 146
|
[13] |
Liu W, Yamaguchi S, Tsuchiya T, Miyoshi S, Kobayashi K and Pan W 2013 J. Power Sour. 235 62
|
[14] |
Fukuda K, Asaka T, Okino M, Berghout A, Béchade E, Masson O, Julien I and Thomas P 2012 Solid State Ion. 217 40
|
[15] |
Orera A, Baikie T, Panchmatia P, White T J, Hanna J, Smith M E, Islam M S, Kendrick E and Slater P R 2011 Fuel Cells 1 10
|
[16] |
Yoshioka H, Nojiri Y and Tanase S 2008 Solid State Ion. 179 2165
|
[17] |
Baikie T, Mercier P H J, Elcombe M M, Kim J Y, Mitchell L D, White T J and Whitefield P S 2007 Acta Crystallogr. B 63 251
|
[18] |
Kendrick E, Islam M S and Slater P R 2007 J. Mater. Chem. 17 3104
|
[19] |
Orera A, Baikie T, Kendrick E, Shin J F, Pramana S, Smith R, White T J, Sanjuan M L and Slater P R 2011 Dalton Trans. 40 3903
|
[20] |
Yoshioka H, Nojiri Y, Matsushita Y and Tanase S 2008 Solid State Ionics 179 2165
|
[21] |
Ali R, Yashima M, Matsumura Y, Yoshioka H, Yoshioka H, Ohoyama K and Izumi F 2008 Chem. Mater. 20 5203
|
[22] |
Yoshioka H 2007 J. Am. Ceram. Soc. 90 3099
|
[23] |
Nojiri Y, Tanase S, Iwasa M, Yoshioka H, Matsumura Y and Sakai T 2010 J. Power Sour. 195 4059
|
[24] |
Kendrick E, Sansom J E H, Tolchard J R, Islam M S and Slater P R 2007 Faraday Discuss. 134 181
|
[25] |
Reina L L, Losilla E R, Lara M M, Bruque S, Llobet A, Sheptyakov D V and Aranda M A G 2005 Chem. Mater. 15 2489
|
[26] |
Orera A, Kendrick E, Apperley D C, Orera V M and Slater P R 2008 Dalton Trans. 5296
|
[27] |
Tolchard J R, Islam M S and Slater P R 2003 J. Mater. Chem. 13 1956
|
[28] |
Yin G C, Yin H, Wang X, Sun M L, Zhong L H, Cong R D, Zhu H Y, Gao W and Cui Q L 2014 J. Alloy. Comp. 611 24
|
[29] |
Yin G C, Yin H, Zhu H Y, Wu X X, Zhong L H, Sun M L, Cong R D, Zhang J, Gao W and Cui Q L 2014 J. Alloy. Comp. 586 279
|
[30] |
Hammersley A P, Svensson S O, Hanfland M, Fitch A N and H? usermann D 1996 High Pressure Res. 14 235
|
[31] |
Li Q J and Liu B B 2016 Chin. Phys. B 25 076107
|
[32] |
Zou Y G, Xu L, Tian K, Zhang H, Ma X H and Yao M G 2016 Chin. Phys. B 25 056101
|
[33] |
Chen H Y, Xiang S K, Yan X Z, L R, Zhang Y, Liu S G and Bi Y 2016 Chin. Phys. B 25 108103
|
[34] |
Errandonea D and Manjon F J 2008 Prog. Mater. Sci. 53 711
|
[35] |
Matsunaga K and Toyoura K 2012 J. Mater. Chem. 22 7265
|
[36] |
Kiyoshi K and Yoshio S 2014 J. Ceram. Soc. Jpn 122 921
|
[37] |
White T, Ferraris C, Kim J and Madhavi S 2005 Rev. Mineral. Geochem. 57 307
|
[38] |
Toby B H 2006 Powder Diffraction 21 67
|
[39] |
Errandonea D, Pellicer-Porres J, Manjon F J, Segura A, Roca C F, Kumar R S, Tschauner O, Hernandez P R, Solano J L, Radescu S, Mujica A, Munoz A and Aquilanti G 2005 Phys. Rev. B 72 174106
|
[40] |
Angel R J 2000 Reviews in Mineralogy and Geochemistry 41 35
|
[41] |
Gomis O, Perez D S, Vilaplana R, Luna R, Sans J A, Manjon F J, Errandonea D, Gonzalez E P, Hernandez P R, Munoz A and UrsakV V 2014 J. Alloy. Comp. 583 70
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|