Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018202    DOI: 10.1088/1674-1056/27/1/018202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Pressure-induced structural evolution of apatite-type La9.33Si6O26

Guangchao Yin(尹广超)1, Hong Yin(殷红)2, Meiling Sun(孙美玲)1, Wei Gao(高伟)2
1 Functional Molecular Materials Laboratory, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

The pressure-induced structural evolution of apatite-type La9.33Si6O26 was systematically studied using in situ synchrotron x-ray diffraction (XRD). The XRD spectra indicated that a subtly reversible phase transition from P63/m to P63 symmetry occurred at~13.6 GPa because of the tilting of the SiO4 tetrahedra under compression. Furthermore, the La9.33Si6O26 exhibited a higher axial compression ratio for the a-axis than the c-axis, owing to the different axial arrangement of the SiO4 tetrahedra. Interestingly, the high-pressure phase showed compressibility unusually higher than that of the initial phase, suggesting that the low P63 symmetry provided more degrees of freedom. Moreover, the La9.33Si6O26 exhibited a lower phase transition pressure (PT) and a higher lattice compression than La10Si6O27. Comparisons between La9.33Si6O26 and La10Si6O27 provided a deeper understanding of the effect of interstitial oxygen atoms on the structural evolution of apatite-type lanthanum silicates (ATLSs).

Keywords:  lanthanum silicates      structural evolution      interstitial oxygen atoms      compressibility  
Received:  28 July 2017      Revised:  06 September 2017      Accepted manuscript online: 
PACS:  82.45.Gj (Electrolytes)  
  61.05.cp (X-ray diffraction)  
  81.40.Vw (Pressure treatment)  
Fund: 

Project supported by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2015AQ010 and ZR2016FB16) and the Open Project Fund of State Key Laboratory of Superhard Materials of China (Grant No. 201509).

Corresponding Authors:  Wei Gao     E-mail:  gwei@jlu.edu.cn

Cite this article: 

Guangchao Yin(尹广超), Hong Yin(殷红), Meiling Sun(孙美玲), Wei Gao(高伟) Pressure-induced structural evolution of apatite-type La9.33Si6O26 2018 Chin. Phys. B 27 018202

[1] Ma Y, Fenineche N, Elkedim O, Liao H and Briois P 2016 Int. J. Hydrogen Energy 23 9993
[2] Dong X F, Hua G X, Dong D, Zhu W L and Wang H J 2016 J. Power Sources 306 630
[3] Dai L, Han W, Li Y H and Wang L 2016 Int. J. Hydrogen Energy 26 11340
[4] Kioupis D and Kakali G 2016 Ceramics International 8 9640
[5] Cao X G, Jiang S P and Li Y Y 2015 J. Power Sour. 293 806
[6] Xiang J, Ouyang J H and Liu Z G 2015 J. Power Sour. 284 49
[7] Hori S, Takatani Y, Kadoura H, Uyama T, Fujita S and Tan T 2015 Dalton Trans. 44 1755
[8] Li H, Baikie T, Pramana S S, Shin J F, Keenan P J, Slater P R, Brink F, Hester J, An T and White T J 2014 Inorg. Chem. 53 4803
[9] Yin G C, Yin H, Sun M L, Zhong L H, Zhang J K, Cong R D, Gao W and Cui Q L 2014 RSC Adv. 4 15968
[10] Li B Y, Liu J, Hu Y X and Huang Z X 2011 J. Alloy. Compound. 509 3172
[11] Nakayama S and Sakamoto M 2013 Solid State Ionics 253 47
[12] Santos M, Alves C, Oliveira F A C, Marcelo T, Mascarenhas J, Cavaleiro A and Trindade B 2013 J. Power Sour. 231 146
[13] Liu W, Yamaguchi S, Tsuchiya T, Miyoshi S, Kobayashi K and Pan W 2013 J. Power Sour. 235 62
[14] Fukuda K, Asaka T, Okino M, Berghout A, Béchade E, Masson O, Julien I and Thomas P 2012 Solid State Ion. 217 40
[15] Orera A, Baikie T, Panchmatia P, White T J, Hanna J, Smith M E, Islam M S, Kendrick E and Slater P R 2011 Fuel Cells 1 10
[16] Yoshioka H, Nojiri Y and Tanase S 2008 Solid State Ion. 179 2165
[17] Baikie T, Mercier P H J, Elcombe M M, Kim J Y, Mitchell L D, White T J and Whitefield P S 2007 Acta Crystallogr. B 63 251
[18] Kendrick E, Islam M S and Slater P R 2007 J. Mater. Chem. 17 3104
[19] Orera A, Baikie T, Kendrick E, Shin J F, Pramana S, Smith R, White T J, Sanjuan M L and Slater P R 2011 Dalton Trans. 40 3903
[20] Yoshioka H, Nojiri Y, Matsushita Y and Tanase S 2008 Solid State Ionics 179 2165
[21] Ali R, Yashima M, Matsumura Y, Yoshioka H, Yoshioka H, Ohoyama K and Izumi F 2008 Chem. Mater. 20 5203
[22] Yoshioka H 2007 J. Am. Ceram. Soc. 90 3099
[23] Nojiri Y, Tanase S, Iwasa M, Yoshioka H, Matsumura Y and Sakai T 2010 J. Power Sour. 195 4059
[24] Kendrick E, Sansom J E H, Tolchard J R, Islam M S and Slater P R 2007 Faraday Discuss. 134 181
[25] Reina L L, Losilla E R, Lara M M, Bruque S, Llobet A, Sheptyakov D V and Aranda M A G 2005 Chem. Mater. 15 2489
[26] Orera A, Kendrick E, Apperley D C, Orera V M and Slater P R 2008 Dalton Trans. 5296
[27] Tolchard J R, Islam M S and Slater P R 2003 J. Mater. Chem. 13 1956
[28] Yin G C, Yin H, Wang X, Sun M L, Zhong L H, Cong R D, Zhu H Y, Gao W and Cui Q L 2014 J. Alloy. Comp. 611 24
[29] Yin G C, Yin H, Zhu H Y, Wu X X, Zhong L H, Sun M L, Cong R D, Zhang J, Gao W and Cui Q L 2014 J. Alloy. Comp. 586 279
[30] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and H? usermann D 1996 High Pressure Res. 14 235
[31] Li Q J and Liu B B 2016 Chin. Phys. B 25 076107
[32] Zou Y G, Xu L, Tian K, Zhang H, Ma X H and Yao M G 2016 Chin. Phys. B 25 056101
[33] Chen H Y, Xiang S K, Yan X Z, L R, Zhang Y, Liu S G and Bi Y 2016 Chin. Phys. B 25 108103
[34] Errandonea D and Manjon F J 2008 Prog. Mater. Sci. 53 711
[35] Matsunaga K and Toyoura K 2012 J. Mater. Chem. 22 7265
[36] Kiyoshi K and Yoshio S 2014 J. Ceram. Soc. Jpn 122 921
[37] White T, Ferraris C, Kim J and Madhavi S 2005 Rev. Mineral. Geochem. 57 307
[38] Toby B H 2006 Powder Diffraction 21 67
[39] Errandonea D, Pellicer-Porres J, Manjon F J, Segura A, Roca C F, Kumar R S, Tschauner O, Hernandez P R, Solano J L, Radescu S, Mujica A, Munoz A and Aquilanti G 2005 Phys. Rev. B 72 174106
[40] Angel R J 2000 Reviews in Mineralogy and Geochemistry 41 35
[41] Gomis O, Perez D S, Vilaplana R, Luna R, Sans J A, Manjon F J, Errandonea D, Gonzalez E P, Hernandez P R, Munoz A and UrsakV V 2014 J. Alloy. Comp. 583 70
[1] Negative compressibility property in hinging open-cell Kelvin structure
Meng Ma(马梦), Xiao-Qin Zhou(周晓勤), Hao Liu(刘浩), and Hao-Cheng Wang(王浩成). Chin. Phys. B, 2021, 30(5): 056201.
[2] Effect of tellurium (Te4+) irradiation on microstructure and associated irradiation-induced hardening
Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Guanhong Lei(雷冠虹), Ondrej Muránsky, Tao Wei, and Mihail Ionescu. Chin. Phys. B, 2021, 30(5): 056108.
[3] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[4] Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study
Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2018, 27(8): 083601.
[5] Effects of temperature and point defects on the stability of C15 Laves phase in iron: A molecular dynamics investigation
Hao Wang(王昊), Ning Gao(高宁), Guang-Hong Lü(吕广宏), Zhong-Wen Yao(姚仲文). Chin. Phys. B, 2018, 27(6): 066104.
[6] Magneto-Rayleigh–Taylor instability in compressible Z-pinch liner plasmas
Xue Yang(杨学), De-Long Xiao(肖德龙), Ning Ding(丁宁), Jie Liu(刘杰). Chin. Phys. B, 2017, 26(7): 075202.
[7] Negative linear compressibility of generic rotating rigid triangles
Xiao-Qin Zhou(周晓勤), Lei Zhang(张磊), Lu Yang(杨璐). Chin. Phys. B, 2017, 26(12): 126201.
[8] MnFe(PGe) compounds: Preparation, structural evolution, and magnetocaloric effects
Yue Ming (岳明), Zhang Hong-Guo (张红国), Liu Dan-Min (刘丹敏), Zhang Jiu-Xing (张久兴). Chin. Phys. B, 2015, 24(1): 017505.
[9] Relation between Tolman length and isothermal compressibility for simple liquids
Wang Xiao-Song (王小松), Zhu Ru-Zeng (朱如曾). Chin. Phys. B, 2013, 22(3): 036801.
[10] Analysis of equation of state and thermodynamic functions for trans-decahydronaphthalene up to 200 MPa and 446 K
Li Ming(李明), Chen Cui-Ling(陈翠玲), Sun Jiu-Xun(孙久勋), Tian Rong-Gang(田荣刚), and Xiao Jian-Rong(肖剑荣). Chin. Phys. B, 2009, 18(9): 3795-3801.
[11] All-electron study of ultra-incompressible superhard material ReB2: structural and electronic properties
Li Yan-Ling(李延龄), Zhong Guo-Hua(钟国华), and Zeng Zhi(曾雉). Chin. Phys. B, 2009, 18(10): 4437-4442.
[12] Compositional and structural evolution of the titanium dioxide formation by thermal oxidation
Su Wei-Feng(苏卫锋), Gnaser Hubert , Fan Yong-Liang(樊永良), Jiang Zui-Min(蒋最敏), and Le Yong-Kang(乐永康). Chin. Phys. B, 2008, 17(8): 3003-3007.
[13] Gas flow characteristics in straight silicon microchannels
Ding Ying-Tao (丁英涛), Yao Zhao-Hui (姚朝晖), Shen Meng-Yu (沈孟育). Chin. Phys. B, 2002, 11(9): 869-875.
No Suggested Reading articles found!