Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057502    DOI: 10.1088/1674-1056/26/5/057502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of misch metal content on microstructure and magnetic properties of R-Fe-B magnets sintered by dual alloy method

Rong-Xiang Shang(商荣翔)1,2, Jie-Fu Xiong(熊杰夫)1,2, Dan Liu(刘丹)1,2, Shu-Lan Zuo(左淑兰)1,2, Xin Zhao(赵鑫)1,2, Rui Li(李锐)1,2, Wen-Liang Zuo(左文亮)1,2, Tong-Yun Zhao(赵同云)1,2, Ren-Jie Chen(陈仁杰)2,3, Ji-Rong Sun(孙继荣)1,2, Bao-Gen Shen(沈保根)1,2
1 State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  

MM14Fe79.9B6.1/Nd13.5Fe80.5B6 magnets were fabricated by dual alloy method (MM, misch metal). Some magnets have two Curie temperatures. Curie temperatures Tc1 corresponds to the main phase which contains more LaCe, and Tc1 decreases from 276.5 ℃ to 256.6 ℃ with the content of MM increasing from 30.3 at.% to 50.6 at.%. The variation of Br with the increase of MM indicates the existence of inter-grain exchange coupling in the magnets. When MM/R ≤ 30.3 at.%, the magnetic properties can reach the level of the intrinsic coercivity Hcj ≥ 7.11 kOe and the maximum energy product (BH)max ≥ 41 MGOe. Compared with Nd, La and Ce are easier to diffuse to the grain boundaries in the sintering process, and this will cause the decrease of Hcj. Due to the diffusion between the grains, the atomic ratio of La, Ce, Pr, and Nd in each grain is different and the percentage of Nd in all grains is higher than that in misch metal.

Keywords:  misch metal      multiple-main-phase      grain      permanent magnet  
Received:  20 February 2017      Revised:  07 March 2017      Accepted manuscript online: 
PACS:  75.50.Vv (High coercivity materials)  
  75.50.Ww (Permanent magnets)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2014CB643702 and 2016YFB0700903), the National Natural Science Foundation of China (Grant No. 51590880), and the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-M05).

Corresponding Authors:  Bao-Gen Shen     E-mail:  shenbg@aphy.iphy.ac.cn

Cite this article: 

Rong-Xiang Shang(商荣翔), Jie-Fu Xiong(熊杰夫), Dan Liu(刘丹), Shu-Lan Zuo(左淑兰), Xin Zhao(赵鑫), Rui Li(李锐), Wen-Liang Zuo(左文亮), Tong-Yun Zhao(赵同云), Ren-Jie Chen(陈仁杰), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根) Influence of misch metal content on microstructure and magnetic properties of R-Fe-B magnets sintered by dual alloy method 2017 Chin. Phys. B 26 057502

[1] Sagawa M, Fujimura S, Togawa N and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Jiles D C 2003 Acta Mater. 51 5907
[3] Yu X Q, Yue M, Liu W Q, Li Z, Zhu, M G and Dong S Z 2016 J. Rare Earth 34 614
[4] Liu W Q, Yue M, Cui B Z and Hadjipanayis G C. 2014 Rev. Nanosci. Nanotechnol. 3 259
[5] Yue M, Li Y Q, Wu Q and Liu W Q 2014 Rev. Nanosci. Nanotechnol. 3 276
[6] Pei K, Zhang X, Lin M and Yan A R 2016 J. Magn. Magn. Mater. 398 96
[7] Burzo E 1998 Rep. Prog. Phys. 61 1099
[8] Xing M Y, Han J Z, Lin Z, Wan F M, Li C, Liu S Q, Wang C S, Yang J B and Yang Y C 2013 J. Magn. Magn. Mater. 331 140
[9] Chang W C, Wu S H, Ma B M and Bounds C O 1997 J. Magn. Magn. Mater. 167 65
[10] Wang X C, Zhu M G, Li W, Zheng L Y, Zhao D L, Du X and Du A 2015 Electron. Mater. Lett. 11 109
[11] Okada M, Sugimoto S, Ishizaka C, Tanaka T and Homma M 1985 J. Appl. Phys. 57 4146
[12] Zhu M G, Li Wei, Wang J D, Zheng L Y, Li Y F, Zhang K, Feng H B and Liu Tao 2014 IEEE Trans. Magn. 50 1000104
[13] Tang W Z, Zhou S Z and Wang R 1989 J. Appl. Phys. 65 3142
[14] Niu E, Chen Z A, Chen G A, Zhao Y G, Zhang J R, Hu X L, Wang B P and Zhen X 2014 J. Appl. Phys. 115 113912
[15] Ko Y K, Yoon S and Booth J G 1997 J. Magn. Magn. Mater. 176 313
[16] Zhang M, Shen B G, Hu F X and Sun J R 2015 IEEE Trans. Magn. 51 2103304
[17] Zhang X F, Shi Y, Ma Q, Liu Y L, Shi M F, Li Y F, Wang G F and Zhao Z R 2015 Rare Metal Mat. Eng. 44 748
[18] Yan C J, Guo S, Chen R J, Lee D and Yan A R 2014 IEEE Trans. Magn. 50 2104604
[19] Hussain M, Zhao L Z, Zhang C, Jiao D L, Zhong X C and Liu Z W 2016 Physica B 483 69
[20] Pathak A K, Khan M, Jr K A G, McCallum R. W, Zhou L, Sun K W, Dennis K W, Zhou C, Pinkerton F. E, Kramer M J and Pecharsky V K 2015 Adv. Mater. 27 2663
[21] Pandian S, Chandrasekaran V, Markandeyulu G, Iyer K J L and Rama Rao K V S 2002 J. Appl. Phys. 92 6082
[22] Shang R X, Xiong J F, Li R, Zuo W L, Zhang J, Zhao T Y, Chen R J, Sun J R and Shen B G 2017 AIP Adv. 7 056215
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[3] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[4] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[5] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[6] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[7] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[8] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[9] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[10] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[11] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[12] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[13] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[14] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[15] Effect of graphene grain boundaries on MoS2/graphene heterostructures
Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟). Chin. Phys. B, 2020, 29(6): 067403.
No Suggested Reading articles found!