Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 020501    DOI: 10.1088/1674-1056/26/2/020501
GENERAL Prev   Next  

Pattern dynamics of network-organized system with cross-diffusion

Qianqian Zheng(郑前前)1, Zhijie Wang(王直杰)1, Jianwei Shen(申建伟)2
1 College of Information Science and Technology, Donghua University, Shanghai 201620, China;
2 Institute of Applied Mathematics, Xuchang University, Xuchang 461000, China
Abstract  Cross-diffusion is a ubiquitous phenomenon in complex networks, but it is often neglected in the study of reaction-diffusion networks. In fact, network connections are often random. In this paper, we investigate pattern dynamics of random networks with cross-diffusion by using the method of network analysis and obtain a condition under which the network loses stability and Turing bifurcation occurs. In addition, we also derive the amplitude equation for the network and prove the stability of the amplitude equation which is also an effective tool to investigate pattern dynamics of the random network with cross diffusion. In the meantime, the pattern formation consistently matches the stability of the system and the amplitude equation is verified by simulations. A novel approach to the investigation of specific real systems was presented in this paper. Finally, the example and simulation used in this paper validate our theoretical results.
Keywords:  cross diffusion      random network      Turing instability      amplitude equation  
Received:  23 July 2016      Revised:  20 November 2016      Accepted manuscript online: 
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.40.Ca (Noise)  
  05.65.+b (Self-organized systems)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272277, 11572278, and 11572084) and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 2017JR0013).
Corresponding Authors:  Zhijie Wang, Jianwei Shen     E-mail:  wangzj@dhu.edu.cn;phdshen@126.com

Cite this article: 

Qianqian Zheng(郑前前), Zhijie Wang(王直杰), Jianwei Shen(申建伟) Pattern dynamics of network-organized system with cross-diffusion 2017 Chin. Phys. B 26 020501

[1] Turing A M 1952 Trans. R. Soc. B 237 37
[2] Zheng Q Q and Shen J W 2014 Nonlinear Dynamics 78 1301
[3] Wang L 2010 Chin. Phys. B 19 090206
[4] Cohen S, Brennecke J and Stark A 2006 Genes Dev. 20 2769
[5] Economou A D, Ohazama A, Porntaveetus T, Sharpe P T, Kondo S, Basson M A, Gritli-Linde A, Cobourne M T and Green J B 2012 Nature Genetics 44 348
[6] Zemskov E P, Vanag V K and Epstein I R 2011 Phys. Rev. E 84 036216
[7] Lu J, Leung H and Chen G R 2004 Discrete and Impulsive Systems Series B: Applications and Algorithms 11 70
[8] McGraw P N and Menzinger M 2008 Phys. Rev. E 77 031102
[9] Arenas A, Díaz-Guilerac A, Kurthsd J, Morenob Y and Zhou C S 2008 Phys. Rep. 469 93
[10] Shen J W 2011 Commun. Theor. Phys. 55 465
[11] Shen J W, Liu Z R, Zheng W X, Xu F D and Chen L N 2009 Physca A 388 2995
[12] Othmer H G and Scriven L E 1971 J. Theor. Biol. 32 507
[13] Nakao H and Mikhailov A S 2010 Nat. Phys. 6 544
[14] Hata S, Nakao H and Mikhailov A S 2012 Europhys. Lett. 98 64004
[15] Boccaletti S, Latorab V, Morenod Y, Chavez M and Hwangaet D U 2008 Phys. Rep. 424 175
[16] Arenas A, LatoraV, MorenoY, Chavez M and Hwang D U 2008 Phys. Rep. 469 3
[17] Horsthemke W, Lam K and Moore P K 2004 Phys.Lett.A 328 444
[18] Moore P K 2005 Physica D 206 121
[19] Brenton J, Matthew J and Mark D 2011 Front. Comput. Neurosci. 5 6
[20] Gunaratne G H, Ouyang Q and Swinney H L 1994 Phys. Rev. E 50 2802
[21] Daniel M B, Planchon G, Asllani M, Carletti T and Fanelli D 2015 Stat. Mech. 88 222
[22] Kitano H 2004 Nat. Rev. Genet. 5 826
[23] Thattai M and Oudenaarden V 2001 Proc. Natl. Acad. Sci. USA 98 8614
[24] Wang B Y and Gong Y B 2015 Chin. Phys.B 24 118702
[25] Strzyz P 2016 Nat. Rev. Mol. Cell Biol. 17 2
[26] Waldron D 2016 Nat. Rev. Gen. 16 264
[27] Chaplain M, Ptashnyk M and Sturrock M 2015 Phys. Rev. E 25 1179
[28] Jansena M and Pfaffelhuberb P 2015 Journal of Theoretical Biology 364 355
[29] Jahanpanah J, Rezazadeh M and Rahdar A A 2014 Chin. Phys.B 23 124205
[30] Zhan M and Zou W 2010 Chin. Phys. B 19 100509
[31] Shi J P, Xie Z F and Little K 2011 J. Appl. Anal. Comput. 1 95
[32] Kondo S and Miura T 2010 Science 329 5999
[33] Li X Z, Bai Z G, Li Y, He Y F and Zhao K 2015 Chin. Phys.B 24 048201
[34] James C, Alexandre R M and James S 2015 Cell System 1 257
[1] Effects of refractory period on dynamical range inexcitable networks
Ya-Qin Dong(董亚琴), Fan Wang(王帆), Sheng-Jun Wang(王圣军), Zi-Gang Huang(黄子罡). Chin. Phys. B, 2019, 28(12): 128701.
[2] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[3] Turing pattern selection in a reaction–diffusion epidemic model
Wang Wei-Ming(王玮明), Liu Hou-Ye(刘厚业), Cai Yong-Li (蔡永丽), and Li Zhen-Qing (李镇清) . Chin. Phys. B, 2011, 20(7): 074702.
[4] Pattern selection in a predation model with self and cross diffusion
Wang Wei-Ming(王玮明), Wang Wen-Juan(王文娟), Lin Ye-Zhi(林晔智), and Tan Yong-Ji(谭永基). Chin. Phys. B, 2011, 20(3): 034702.
[5] Effect of surface tension on the mode selection of vertically excited surface waves in a circular cylindrical vessel
Jian Yong-Jun (菅永军), E Xue-Quan (鄂学全), Zhang Jie (张杰), Meng Jun-Min (孟俊敏). Chin. Phys. B, 2004, 13(12): 2013-2020.
[6] Surface waves in a vertically excited circular cylindrical container
Jian Yong-Jun (菅永军), E Xue-Quan (鄂学全), Zhang Jie (张杰), Meng Jun-Min (孟俊敏). Chin. Phys. B, 2004, 13(10): 1623-1630.
[7] Instability of the vertically forced surface wave in a circular cylindrical container
Jian Yong-Jun (菅永军), E Xue-Quan (鄂学全). Chin. Phys. B, 2004, 13(10): 1631-1638.
No Suggested Reading articles found!