Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017103    DOI: 10.1088/1674-1056/26/1/017103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Implementation of LDA+Gutzwiller with Newton's method

Jian Zhang(张健)1, Ming-Feng Tian(田明锋)2,3, Guang-Xi Jin(金光希)4, Yuan-Feng Xu(徐远锋)1, Xi Dai(戴希)1
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3. CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, China;
4. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  

In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calculation are improved dramatically by using Newton's method with golden section search and other improvement approaches. We compare the calculated results by applying the previous linear mix method and Newton's method. We have applied our code to study the electronic structure of several typical strong correlated materials, including SrVO3, LaCoO3, and La2O3Fe2Se2. Our results fit quite well with the previous studies.

Keywords:  LDA+Gutzwiller      strongly correlated electrons      Newton'      s method  
Received:  07 September 2016      Revised:  25 November 2016      Accepted manuscript online: 
PACS:  71.27+a  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 2011CBA00108), the National Basic Research Program of China (Grant No. 2013CB921700), and the Foundation of LCP.

Corresponding Authors:  Xi Dai     E-mail:  daix@aphy.iphy.ac.cn

Cite this article: 

Jian Zhang(张健), Ming-Feng Tian(田明锋), Guang-Xi Jin(金光希), Yuan-Feng Xu(徐远锋), Xi Dai(戴希) Implementation of LDA+Gutzwiller with Newton's method 2017 Chin. Phys. B 26 017103

[1] Deng X Y, Dai X and Fang Z 2008 EPL 83 37008
[2] Deng X Y, Wang L, Dai X and Fang Z 2009 Chin. Phys. B 79 075114
[3] Bünemann J, Weber W and Gebhard F 1998 Phys. Rev. B 57 6896
[4] Anisimov V I, Kondakov D E, Kozhevnikov A V, Nekrasov I A, Pchelkina Z V, Allen J W, Mo S K, Kim H D, Metcalf P,Suga S, Sekiyama A, Keller G, Leonov I, Ren X and Vollhardt D 2005 Phys. Rev. B 71 125119
[5] Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A and Andersen O K 1998 Phys. Rev. B 74 125120
[6] Zhao J Z, Zhuang J N, Deng X Y, Bi Yan, Cai L C, Fang Z and Dai X 2012 Chin. Phys. B 21 057106
[7] Liebsch A 2003 Phys. Rev. Lett. 90 096401
[8] Nekrasov I A, Keller G, Kondakov D E, Kozhevnikov A V, Pruschke Th, Held K, Vollhardt D and Anisimov V I 2005 Phys. Rev. B 72 155106
[9] Fujimori A, Hase I, Namatame H, Fujishima Y, Tokura Y, Eisaki H, Uchida S, Takegahara K and de Groot F M F 1992 Phys. Rev. Lett. 69 1796
[10] Inoue I H, Hase I, Aiura Y, Fujimori A, Haruyama Y, Maruyama T and Nishihara Y 1995 Phys. Rev. Lett. 74 2539
[11] Sekiyama A, Fujiwara H, Imada S, Suga S, Eisaki H, Uchida S I, Takegahara K, Harima H, Saitoh Y and Nekrasov I A 2004 Phys. Rev. Lett. 93 156402
[12] Bünemann J, Gebhard F and Thul R 2003 Phys. Rev. B 67 075103
[13] Medici Luca de' 2011 Phys. Rev. B 83 205112
[14] Brinkman W F and Rice T M 1907 Phys. Rev. B 2 4302
[15] Lanatà N, Strand H U R, Dai X and Hellsing B 2012 Phys. Rev. B 85 035133
[16] Wang Y L, Wang Z J, Fang Z and Dai X 2015 Phys. Rev. B 91 125139
[17] Chainani A, Mathew M and Sarma D D 1992 Phys. Rev. B 46 9976
[18] Abbate M, Fuggle J C, Fujimori A, Tjeng L H, Chen C T, Potze R, Sawatzky G A, Eisaki H and Uchida S 1993 Phys. Rev. B 47 16124
[19] Arima T, Tokura Y and Torrance J B 1993 Phys. Rev. B 48 17006
[20] Free D G and Evans J S O 2010 Phys. Rev. B 81 214433
[21] Zhu J X, Yu R, Wang H d, Zhao L L, Jones M D, Dai J H, Abrahams E, Morosan E, Fang M H and Si Q M 2010 Phys. Rev. Lett. 104 216405
[22] Lei H C, Bozin E S, Llobet A, Ivanovski V, Koteski V, Belosevic C J, Cekic B and Petrovic C 2012 Phys. Rev. B 86 125122
[23] Jin G X, Wang Y L, Dai X and He L X 2016 Phys. Rev. B 94 075150
[24] Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes, 3rd Edition:The Art of Scientific Computing (New York:Cambridge University Press) Section 10.2
[1] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[2] Gauss quadrature based finite temperature Lanczos method
Jian Li(李健) and Hai-Qing Lin(林海青). Chin. Phys. B, 2022, 31(5): 050203.
[3] Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军). Chin. Phys. B, 2022, 31(2): 020501.
[4] A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties
Shijie Liu(刘世杰) and Hui Du(杜慧). Chin. Phys. B, 2021, 30(7): 076104.
[5] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[6] Versatile GaInO3-sheet with strain-tunable electronic structure, excellent mechanical flexibility, and an ideal gap for photovoltaics
Hui Du(杜慧), Shijie Liu(刘世杰), Guoling Li(李国岭), Liben Li(李立本), Xueshen Liu(刘学深), Bingbing Liu(刘冰冰). Chin. Phys. B, 2019, 28(1): 016105.
[7] Generalized Lanczos method for systematic optimization of tensor network states
Rui-Zhen Huang(黄瑞珍), Hai-Jun Liao(廖海军), Zhi-Yuan Liu(刘志远), Hai-Dong Xie(谢海东), Zhi-Yuan Xie(谢志远), Hui-Hai Zhao(赵汇海), Jing Chen(陈靖), Tao Xiang(向涛). Chin. Phys. B, 2018, 27(7): 070501.
[8] Simulation of a torrential rainstorm in Xinjiang and gravity wave analysis
Rui Yang(杨瑞), Yi Liu(刘毅), Ling-Kun Ran(冉令坤), Yu-Li Zhang(张玉李). Chin. Phys. B, 2018, 27(5): 059201.
[9] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[10] Directional mechanical and thermal properties of single-layer black phosphorus by classical molecular dynamics
Afira Maryam, Ghulam Abbas, Muhammad Rashid, Atif Sattar. Chin. Phys. B, 2018, 27(1): 017401.
[11] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[12] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[13] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[14] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[15] Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method
Fan Hong-Yi (范洪义), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2015, 24(7): 070305.
No Suggested Reading articles found!