Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077504    DOI: 10.1088/1674-1056/25/7/077504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering

Dan Wang(王丹)1, Bingbing Lin(林兵兵)1, Taipeng Shen(申太鹏)1, Jun Wu(吴君)1, Fuhua Hao(豪富华)2, Chunchao Xia(夏春潮)3, Qiyong Gong(龚启勇)3, Huiru Tang(唐惠儒)2, Bin Song(宋彬)3, Hua Ai(艾华)1,3
1 National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China;
2 Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
3 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
Abstract  

Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ε-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (Ms) and T2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing.

Keywords:  nanoparticle clusters      interparticle spacing      ligand exchange      magnetization  
Received:  22 May 2016      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  81.16.Dn (Self-assembly)  
  87.61.-c (Magnetic resonance imaging)  
  87.85.J- (Biomaterials)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).

Corresponding Authors:  Hua Ai     E-mail:  huaai@scu.edu.cn

Cite this article: 

Dan Wang(王丹), Bingbing Lin(林兵兵), Taipeng Shen(申太鹏), Jun Wu(吴君), Fuhua Hao(豪富华), Chunchao Xia(夏春潮), Qiyong Gong(龚启勇), Huiru Tang(唐惠儒), Bin Song(宋彬), Hua Ai(艾华) Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering 2016 Chin. Phys. B 25 077504

[1] Iliff J J, Lee H, Yu M, Feng T, Logan J, Nedergaard M and Benveniste H 2013 J. Clin. Invest. 123 1299
[2] Jin R, Lin B, Li D and Ai H 2014 Curr. Opin. Pharmacol. 18 18
[3] Nathan P, Zweifel M, Padhani A R, Koh D M, Ng M, Collins D J, Harris A, Carden C, Smythe J, Fisher N, Taylor N J, Stirling J J, Lu S P, Leach M O, Rustin G J S and Judson I 2012 Clin. Cancer Res. 18 3428
[4] Sourbron S, Sommer W H, Reiser M F and Zech C J 2012 Radiology 263 874
[5] Wang D, Su H, Liu Y, Wu C, Xia C, Sun J, Gao F, Gong Q, Song B and Ai H 2012 Chin. Sci. Bullet 57 4012
[6] Wang D, Lin B B and Ai H 2014 Pharm. Res.-Dordr 31 1390
[7] Shokrollahi H 2013 Mat. Sci. Eng. C-Mater. 33 4485
[8] Lin B, Su H, Jin R, Li D, Wu C, Jiang X, Xia C, Gong Q, Song B and Ai H 2015 Sci. Bullet 60 1272
[9] Su H Y, Wu C Q, Li D Y and Ai H 2015 Chin. Phys. B 24 127506
[10] Jasanoff A 2007 Curr. Opin Neurobiol. 17 593
[11] Xie J, Liu G, Eden H S, Ai H and Chen X Y 2011 Accounts Chem. Res. 44 883
[12] Lee N and Hyeon T 2012 Chem. Soc. Rev. 41 2575
[13] Jun Y W, Lee J H and Cheon J 2008 Angew. Chem. Int. Ed. 47 5122
[14] Lu J, Ma S L, Sun J Y, Xia C C, Liu C, Wang Z Y, Zhao X N, Gao F B, Gong Q Y, Song B, Shuai X T, Ai H and Gu Z W 2009 Biomaterials 30 2919
[15] Paquet C, de Haan H W, Leek D M, Lin H Y, Xiang B, Tian G H, Kell A and Simard B 2011 Acs Nano 5 3104
[16] Su H Y, Liu Y H, Wang D, Wu C Q, Xia C C, Gong Q Y, Song B and Ai H 2013 Biomaterials 34 1193
[17] Poselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Masslo C and Weller H 2012 Acs Nano 6 1619
[18] Tromsdorf U I, Bigall N C, Kaul M G, Bruns O T, Nikolic M S, Mollwitz B, Sperling R A, Reimer R, Hohenberg H, Parak W J, Forster S, Beisiegel U, Adam G and Weller H 2007 Nano Lett. 7 2422
[19] Taktak S, Sosnovik D, Cima MJ, Weissfeder R and Josephson L 2007 Anal. Chem. 79 8863
[20] Frankamp BL, Boal AK, Tuominen M T and Rotello V M 2005 J. Am. Chem. Soc. 127 9731
[21] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G X 2004 J. Am. Chem. Soc. 126 273
[22] Xu C J, Xu K M, Gu H W, Zheng R K, Liu H, Zhang X X, Guo Z H and Xu B 2004 J. Am. Chem. Soc. 126 9938
[23] Matsumoto Y and Jasanoff A 2008 Magn. Reson. Imaging 26 994
[24] Tong S, Hou S J, Zheng Z L, Zhou J and Bao G 2010 Nano Lett. 10 4607
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[3] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[4] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[5] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[6] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[7] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[8] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[9] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[10] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[11] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[12] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[13] Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field
Yu-Song Hu(胡玉松), Min Jiang(江敏), Tao Hong(洪涛), Zheng-Ming Tang(唐正明), and Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2021, 30(9): 090202.
[14] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[15] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
No Suggested Reading articles found!