Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120401    DOI: 10.1088/1674-1056/22/12/120401
GENERAL Prev   Next  

Conserved charges of Kerr–Ads spacetime using Poincaré gauge version

Gamal G. L. Nasheda b
a Basic Science Department, Faculty of Engineering, The British University in Egypt Sherouk City 11837, P. O. Box 43, Egypt;
b Mathematics Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
Abstract  The process of covariant conserved charge of gravitational theory, which is covariant under general coordinate and local Lorentz transformations, has been applied to many tetrad fields, which reproduce Kerr-Ads spacetime, to calculate their conserved charges. It is shown that this process gives an infinite value of the conserved charges for Kerr–Ads spacetime. Therefore, the method of “regularization through relocalization”, i.e., modification of the Lagrangian of the gravitational field through a total derivative, is used. This method gaves a finite and a consistent result of total energy and angular momentum for Kerr–Ads spacetime.
Keywords:  Kerr–Ads spacetimes      total conserved charges      Poincaré      gauge version  
Received:  26 April 2013      Revised:  22 May 2013      Accepted manuscript online: 
PACS:  04.20.Cv (Fundamental problems and general formalism)  
  04.50.Kd (Modified theories of gravity)  
  04.90.+e (Other topics in general relativity and gravitation)  
Fund: Project partially supported by the Science Fund from the Egyptian Ministry of Scientific Research (Grant No. 24-2-12).
Corresponding Authors:  Gamal G. L. Nashed     E-mail:  nashed@bue.edu.eg

Cite this article: 

Gamal G. L. Nashed Conserved charges of Kerr–Ads spacetime using Poincaré gauge version 2013 Chin. Phys. B 22 120401

[1] Trautman A 1962 "Conservation Laws in General Relativity", in: Gravitation: An Introduction to Current Research, ed. L. Witten (New York: John Wiley and Sons), pp. 169–198
[2] Faddeev L D 1982 Sov. Phys. Usp. 25 130
[3] Szabados L B 2004 Quasi-local Energy–Momentum and Angular Momentum in GR: A review article, Living Rev. Rel. 7 4; http://www.livingreviews.org/lrr-2004-4
[4] Blagojević M 2002 Gravitation and Gauge Symmetries (Bristol: Institute of Physics)
[5] Nester J M 2004 Class. Quantum Grav. 21 S261
[6] Obukhov Y N and Pereira J G 2003 Phys. Rev. D 67 044016
[7] Maluf J W 1994 J. Math. Phys. 35 335
[8] Schwinger J 1963 Phys. Rev. 130 1253
[9] Maluf J W 1995 J. Math. Phys. 36 4242
[10] T. Ortín 2004 "Gravity and Strings" (New York: Cambridge University Press) p. 166
[11] Møller C 1962 "Tetrad Fields and Conservation Laws in General Relativity", Proceedings of the International School of Physics "Enrico Fermi", ed. C. Møller (London: Academic Press)
[12] Pellegrini C and Plebański J 1963 Mat. Fys. Scr. Dan. Vid. Selsk. 2 No. 4
[13] Hehl F W 1980 Proceedings of the 6th School of Cosmology and Gravitation on Spin, Torsion, Rotation and Supergravity, Erice, 1979, Italy, eds. P. G. Bergmann and V. de Sabbata (New York: Plenum)
[14] Hehl F W, McCrea J D, Mielke E W and Néeman Y 1995 Phys. Rep. B 258 1
[15] Hayashi K 1977 Phys. Lett. B 69 441
[16] Hayashi K and Shirafuji T 1979 Phys. Rev. D 19 3524
[17] Hayashi K and Shirafuji T 1981 Phys. Rev. D 24 3312
[18] Blagojević M and Vasilić M 1988 Class. Quantum Grav. 5 1241
[19] Kawai T 2000 Phys. Rev. D 62 104014
[20] Kawai T, Shibata K and Tanaka I 2000 Prog. Theor. Phys. 104 505
[21] Itin Y 2002 Class. Quantum Grav. 19 173
[22] Nashed G G L 2008 Eur. Phys. J. C 54 291
[23] Itin Y 2005 J. Math. Phys. 46 012501
[24] Hehl F W, Néeman Y, Nitsch J and von der Heyde P 1978 Phys. Lett. B 78 102
[25] Hehl F W 1980 "Four Lectures on Poincaré Gauge Theory", Proceedings of the 6th School of Cosmology and Gravitation Course on Spin, Torsion, Rotation and Supergravity, 1979, Erice, Italy, eds. P. G. Bergmann and V. de Sabbata (New York: Plenum)
[26] Leclerc M 2005 Phys. Rev. D 71 027503
[27] Kawai T 1994 Phys. Rev. D 49 2862
[28] Kawai T 1994 2000 Phys. Rev. D 62 104014
[29] Kopzyński W 1982 J. Phys. A: Math Gen. 15 493
[30] Hehl F W, McCrea J D, Mielke E W and Néeman Y 1995 Phys. Rep. 258 1
[31] Hehl F W, Kerlick G D and von der Heyde P 1976 Phys. Lett. B 63 446
[32] Hehl F W, Lord E A and Smalley L L 1981 Gen. Relat. Grav. 13 1037
[33] Hehl F W and McCrea J D 1986 Found. Phys. 16 267
[34] Hehl F W and Socorro J 1998 Acta Phys. Polon. B 29 1113
[35] Nitsch J and Hehl F W 1980 Phys. Lett. B 90 98
[36] Baekler P and Hehl F W 2006 Int. J. Mod. Phys. D 15 635
[37] Lucas T G, Obukhov Y N and Pereira J G 2009 Phys. Rev. D 80 064043
[38] Awad A M and Johnson C V 2000 Phys. Rev. D 61 084025
[39] Aldrovandi R, Guillen L C T, Pereira J G and Vu K H 2005 "Bringing Together Gravity and the Quanta", Proc. Albert Einstein Century International Conference, July 18–22, 2005, Paris, France,[gr-qc/0603122]
[40] Aldrovandi R, Lucas T G and Pereira J G 2008 "Gravitational Energy–Momentum Conservation in Teleparallel Gravity", arXiv: 0812.0034[gr-qc].
[41] Obukhov Y N and Rubilar G F 2006 Phys. Rev. D 74 064002
[42] Kopzyński W 1990 Ann. Phys. 203 308
[43] Komar A 1962 Phys. Rev. 127 1411
[44] Gibbons G W, Perry M J and Pope C N 2005 Class. Quantum Grav. 22 1503
[45] Nashed G G L 2002 Phys. Rev. D 66 064015
[46] Nashed G G L 2007 Mod. Phys. Lett. A 22 1047
[47] Nashed G G L 2011 Chin. Phys. B 20 100402
[1] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[2] The dynamical properties of a Rydberg hydrogen atom between two parallel metal surfaces
Liu Wei(刘伟), Li Hong-Yun(李洪云), Yang Shan-Ying(杨善迎), and Lin Sheng-Lu(林圣路). Chin. Phys. B, 2011, 20(3): 033401.
No Suggested Reading articles found!