Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030207    DOI: 10.1088/1674-1056/22/3/030207
GENERAL Prev   Next  

Dynamical analysis of a sexually transmitted disease model on complex networks

Yuan Xin-Peng (原新鹏), Xue Ya-Kui (薛亚奎), Liu Mao-Xing (刘茂省)
Department of Mathematics, North University of China, Taiyuan 030051, China
Abstract  In this paper, a sexually transmitted disease model is proposed on complex networks, where contacts between humans are treated as a scale-free social network. There are three groups in our model, which are dangerous male, non-dangerous male, and female. By mathematical analysis, we obtain the basic reproduction number for the existence of endemic equilibrium and study the effects of various immunization schemes about different groups. Furthermore, numerical simulations are undertook to reach and verify more conclusions.
Keywords:  sexually transmitted diseases      basic reproduction number      complex networks      immunization  
Received:  03 August 2012      Revised:  26 September 2012      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10901145), the National Science Foundation of Shanxi Province, China (Grant Nos. 2009011005-1 and 2012011002-1), and the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province, China.
Corresponding Authors:  Xue Ya-Kui     E-mail:  ykxue@nuc.edu.cn

Cite this article: 

Yuan Xin-Peng (原新鹏), Xue Ya-Kui (薛亚奎), Liu Mao-Xing (刘茂省) Dynamical analysis of a sexually transmitted disease model on complex networks 2013 Chin. Phys. B 22 030207

[1] Rohani P, Zhong X and King A A 2010 Science 330 982
[2] Jin Z and Liu Q X 2006 Chin. Phys. 15 1248
[3] Sun G Q, Liu Q X, Jin Z, Chakraborty A and Li B L 2010 J. Theor. Biol. 264 95
[4] Kermack W O and McKendrick A G 1927 Proc. R. Soc. A 115 700
[5] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117
[6] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[7] Pei W D, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B 17 373
[8] Barabasi A L and Albert R 1999 Science 286 509
[9] Liljeros F, Edling C R, Amaral A A N, Stanley H E and Aberg Y 2001 Nature. 411 907
[10] Liu Z B, Zhang H G and Sun Q Y 2010 Chin. Phys. B 19 090506
[11] Zhang H F, Small M, Fu X C, Sun G Q and Wang B H 2012 Physica D 241 1512
[12] Wang Y, Jin Z, Yang Z, Zhang Z K, Zhou T and Sun G Q 2012 Nonlinear Anal-Real. 13 543
[13] Liu M X and Ruan J 2009 Chin. Phys. B 18 2115
[14] Liljeros F, Edling C R, Stanley H E, Aberg Y and Amaral Luis A N 2003 Nature 423 605
[15] Schneeberger A, Mercer C H, Gregson S A, Ferguson N M, Nyamukapa C A, Anderson R M, Johnson A M and Garnett G P 2004 Sex. Transm. Dis. 31 380
[16] Diekmann O, Heesterbeek J A P and Metz J A J 1990 J. Math. Biol. 28 365
[17] van den Driessche P and James W 2002 Math. Biosci. 180 29
[18] Diekmann O, Heesterbeek J A P and Roberts M G 2010 J. R. Soc. Interface 7 873
[19] Fu X C, Small M, Walker D M and Zhang H F 2008 Phys. Rev. E 77 036113
[20] Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 036104
[21] Madar N, Kalisky T, Cohen R, Avraham D and Havlin S 2004 Eur. Phys. J. B 38 269
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[4] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[5] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[6] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[7] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[8] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[9] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[10] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[11] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[12] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[13] Direct immune-SCIR public-opinion propagation model based on real-time online users
Yun-Ming Wang(王运明), Tian-Yi Guo(郭天一)†, Wei-Dong Li(李卫东)‡, and Bo Chen(陈波). Chin. Phys. B, 2020, 29(10): 100204.
[14] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[15] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
No Suggested Reading articles found!