Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 076105    DOI: 10.1088/1674-1056/24/7/076105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Subthreshold behavior of AlInSb/InSb high electron mobility transistors

S. Theodore Chandra, N. B. Balamurugan, G. Lakshmi Priya, S. Manikandan
Department of Electronics and Communication Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India
Abstract  We propose a scaling theory for single gate AlInSb/InSb high electron mobility transistors (HEMTs) by solving the two-dimensional (2D) Poisson equation. In our model, the effective conductive path effect (ECPE) is taken into account to overcome the problems arising from the device scaling. The potential in the effective conducting path is developed and a simple scaling equation is derived. This equation is solved to obtain the minimum channel potential Ødeff,min and the new scaling factor α to model the subthreshold behavior of the HEMTs. The developed model minimizes the leakage current and improves the subthreshold swing degradation of the HEMTs. The results of the analytical model are verified by numerical simulation with a Sentaurus TCAD device simulator.
Keywords:  scaling theory      subthreshold behavior      effective conducting path effect      short channel effect  
Received:  16 October 2014      Revised:  13 February 2015      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  68.65.Fg (Quantum wells)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
Fund: Project supported by the Council of Scientific & Industrial Research (CSIR), Government of India under the SRF Scheme (Sanction Letter No: 08/237(0005)/2012-EMR-I).
Corresponding Authors:  S. Theodore Chandra     E-mail:  theodore@tce.edu

Cite this article: 

S. Theodore Chandra, N. B. Balamurugan, G. Lakshmi Priya, S. Manikandan Subthreshold behavior of AlInSb/InSb high electron mobility transistors 2015 Chin. Phys. B 24 076105

[1] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653
[2] Chang H D, Sun B, Lu L, Zhao W, Wang S K, Wang W X and Liu H G 2012 Acta Phys. Sin. 61 217304 (in Chinese)
[3] Kasap M, Acar S, Celik S, Karadeniz S and Tugluoglu N 2005 Chin. Phys. Lett. 22 1218
[4] Paskova T, Hanser D A and Evans K R 2010 Proc. IEEE 98 1324
[5] Palacios T, Chakraborty A, Heikman S, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron. Device Lett. 27 13
[6] Walter K, Boos J B, Bennett B R, Papanicolaou N A, Doewon P and Bass R 2007 IEEE Trans. Electron. Dev. 54 1193
[7] Kumar S P, Agrawal A, Chaujar R, Kabra S, Gupta M and Gupta R S 2007 Microelectronics Journal 38 1013
[8] Chaudhry A and Jagadesh K M 2004 IEEE Trans. Device Mater. Relia. 4 99
[9] Yan R H, Ourmazd A and Lee K F 1992 IEEE Trans. Electron. Dev. 39 1704
[10] Suzuki K, Tanaka T, Tosaka Y, Horie H and Arimoto Y 1993 IEEE Trans. Electron. Dev. 40 2326
[11] Chiang T K 2005 Microelectronic Engineering 77 175
[12] Du Y D, Cao H Z, Yan W, Han W H, Liu Y, Dong X Z, Zhang Y B, Jin F, Zhao Z S, Yang F H and Duan X M 2012 Appl. Phys. A 106 57
[13] Wang L D, Ding P, Su Y B, Chen J, Zhang B C and Jin Z 2014 Chin. Phys. B 23 038501
[14] Li H O, Huang W, Tang C W, Deng X F and Lau K M 2011 Chin. Phys. B 20 068502
[15] Khandelwal S, Goyal N and Fjedly T A 2011 IEEE Trans. Electron. Dev. 58 3622
[16] Colinge J P 2007 FinFETs and Other Multi Gate Transistors (New York: Springer)
[17] Sze S M 2004 Physics of Semiconductor Devices (2nd Edn.) (New York: Springer)
[18] Balamurugan N B, Sankaranarayanan K and Suguna M 2008 J. Semicond. Tech. Sci. 8 92
[19] Sentaurus Device User Guide 2010 Version D 2010.03, Synopsys Inc
[1] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[2] A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET
Shweta Tripathi. Chin. Phys. B, 2016, 25(10): 108503.
[3] Structural and robustness properties of smart-city transportation networks
Zhang Zhen-Gang (张振刚), Ding Zhuo (丁卓), Fan Jing-Fang (樊京芳), Meng Jun (孟君), Ding Yi-Min (丁益民), Ye Fang-Fu (叶方富), Chen Xiao-Song (陈晓松). Chin. Phys. B, 2015, 24(9): 090201.
[4] A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET
Shweta Tripathi. Chin. Phys. B, 2014, 23(11): 118505.
[5] A threshold voltage analytical model for high-k gate dielectric MOSFETs with fully overlapped lightly doped drain structures
Ma Fei(马飞), Liu Hong-Xia(刘红侠), Kuang Qian-Wei(匡潜玮), and Fan Ji-Bin(樊继斌) . Chin. Phys. B, 2012, 21(5): 057304.
[6] The study on two-dimensional analytical model for gate stack fully depleted strained Si on silicon-germanium-on-insulator MOSFETs
Li Jin(李劲),Liu Hong-Xia(刘红侠),Li Bin(李斌),Cao Lei(曹磊), and Yuan Bo(袁博). Chin. Phys. B, 2010, 19(10): 107301.
[7] Study on two-dimensional analytical models for symmetrical gate stack dual gate strained silicon MOSFETs
Li Jin(李劲), Liu Hong-Xia(刘红侠), Li Bin(李斌), Cao Lei(曹磊), and Yuan Bo(袁博). Chin. Phys. B, 2010, 19(10): 107302.
[8] Influence of structural parameters on the immunity of short-channel effects in grooved-gate nMOSFET
Tong Jian-Nong (童建农), Zou Xue-Cheng (邹雪城), Shen Xu-Bang (沈绪榜). Chin. Phys. B, 2004, 13(11): 1815-1819.
No Suggested Reading articles found!