|
|
Non-linear spectral splitting of Rydberg sodium in external fields |
Gao Wei (高伟)a, Yang Hai-Feng (杨海峰)a, Cheng Hong (成红)a, Zhang Shan-Shan (张珊珊)a, Liu Dan-Feng (刘丹峰)b, Liu Hong-Ping (刘红平)a |
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physicsand Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract We have studied highly excited sodium in various electric fields, parallel electric and magnetic fields, with one σ and π photon irradiation, and even in a magnetic field with a complex laser polarization configuration. The σ spectra shows a simple linear Stark effect with the applied electric field, while the π spectra exhibits a strong non-linear dependence on the electric field. The π transitions in parallel fields show a similar behavior to that in a pure electric field but the spectra get more smooth due to the magnetic field. The diamagnetic spectrum with laser polarization angles between 0 and π/2 proves that it can be reproduced by simple linear combination of π and σ components, indicating there is no interference between the π and σ channels. A full quantum calculation considering the quantum defects accounts for all the observations. The quantum defects, especially for the channel np, play an important role in the spectral profile.
|
Received: 24 June 2014
Revised: 14 July 2014
Accepted manuscript online:
|
PACS:
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
32.80.Ee
|
(Rydberg states)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922003) and the National Natural Science Foundation of China (Grant Nos. 11174329 and 91121005). |
Corresponding Authors:
Liu Hong-Ping
E-mail: liuhongping@wipm.ac.cn
|
Cite this article:
Gao Wei (高伟), Yang Hai-Feng (杨海峰), Cheng Hong (成红), Zhang Shan-Shan (张珊珊), Liu Dan-Feng (刘丹峰), Liu Hong-Ping (刘红平) Non-linear spectral splitting of Rydberg sodium in external fields 2015 Chin. Phys. B 24 013202
|
[1] |
Littman M G, Zimmerman M L, Ducas T W, Freeman R R and Kleppner D 1976 Phys. Rev. Lett. 36 788
|
[2] |
O'Mahony P F 1989 Phys. Rev. Lett. 63 2653
|
[3] |
Main J, Wiebusch G, Holle A and Welge K H 1986 Phys. Rev. Lett. 57 2789
|
[4] |
Fonck R J, Tracy D H, Wright D C and Tomkins F S 1978 Phys. Rev. Lett. 40 1366
|
[5] |
Feneuille S, Liberman S, Luc-Koenig E, Pinard J and Taleb A 1982 Phys. Rev. A 25 2853
|
[6] |
Freeman R R, Economou N P, Bjorklund G C and Lu K T 1978 Phys. Rev. Lett. 41 1463
|
[7] |
Zimmerman M L, Littman M G, Kash M M and Kleppner D 1979 Phys. Rev. A 20 2251
|
[8] |
Menéndez J M, Martín I and Velasco A M 2003 J. Chem. Phys. 119 12926
|
[9] |
Liu J Y, Mcnicholl P, Harmin D A, Ivri J, Bergeman T and Metcalf H J 1985 Phys. Rev. Lett. 55 189
|
[10] |
Sandner W, Safinya K A and Gallagher T F 1981 Phys. Rev. A 23 2448
|
[11] |
Luk T, DiMauro L, Bergeman T and Metcalf H 1981 Phys. Rev. Lett. 47 83
|
[12] |
Gao J, Delos J B and Baruch M 1992 Phys. Rev. A 46 1449
|
[13] |
Gao J and Delos J B 1992 ewblock Phys. Rev. A 46 1455
|
[14] |
Feneuille S, Liberman S, Pinard J and Taleb A 1979 Phys. Rev. Lett. 42 1404
|
[15] |
Du M L and Delos J B 1988 ewblock Phys. Rev. A 38 1896
|
[16] |
Du M L and Delos J B 1988 ewblock Phys. Rev. A 38 1913
|
[17] |
Halley M H, Delande D and Taylor K T 1992 J. Phys. B 25 L525
|
[18] |
Seipp I and Taylor K T 1994 J. Phys. B 27 2785
|
[19] |
Bolgova I L, Ovsyannikov V D, Pal'chikov V G, Magunov A I and von Oppen G 2003 JETP 96 1006
|
[20] |
Gao W, Yang H F, Cheng H, Liu X J and Liu H P 2012 Phys. Rev. A 86 012517
|
[21] |
Yang H F, Gao W, Quan W, Liu X J and Liu H P 2012 Phys. Rev. A 85 032508
|
[22] |
Liu H P, Quan W, Shen L, Connerade J P and Zhan M S 2007 Phys. Rev. A 76 013412
|
[23] |
Korevaar E and Littman M G 1983 J. Phys. B 16 L437
|
[24] |
Yang H F, Gao W, Cheng H and Liu H P 2013 Chin. Phys. B 22 053201
|
[25] |
Meng H Y and Shi T Y 2009 ewblock Commun. Theor. Phys. 52 333
|
[26] |
Li Y, Liu W Y and Li B W 1996 J. Phys. B 29 1433
|
[27] |
Martín I, Lavin A, Karwowski M and Karwowski J 1996 Chem. Phys. Lett. 255 89
|
[28] |
Inmaculada M, Jacek K, Carmen L and Geerd H F D 1991 Phys. Scr. 44 567
|
[29] |
Fang T K and Chang T N 2007 ewblock Phys. Rev. A 76 012721
|
[30] |
Zhao L B and Stancil P C 2007 ewblock J. Phys. B 40 4347
|
[31] |
Cormier E and Lambropoulos P 1997 J. Phys. B 30 77
|
[32] |
Bachau H, Cormier E, Decleva P, Hansen J E and Martín F 2001 Rep. Prog. Phys. 64 1815
|
[33] |
Rao J G, Liu W Y and Li B W 1994 Phys. Rev. A 50 1916
|
[34] |
Sapirstein J and Johnson W 1996 J. Phys. B 29 5213
|
[35] |
Xu J K, Chen H Q and Liu H P 2013 Chin. Phys. B 22 013204
|
[36] |
Bluhm R and Kostelecky V A 1993 Phys. Rev. A 47 794
|
[37] |
Harmin D A 1982 Phys. Rev. Lett. 49 128
|
[38] |
Cacciani P, Luc-Koenig E, Pinard J, Thomas C and Liberman S 1986 Phys. Rev. Lett. 56 1467
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|