|
|
Theoretical study on 2s2p6np Rydberg states of Cu19+ ion |
Zhang Zheng-Rong(张正荣)a)b), Cheng Xin-Lu(程新路)a)†, Liu Zi-Jiang(刘子江)b), Yang Jian-Hui(杨建会)a), and Li Hui-Fang(李慧芳)b) |
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b Department of Physics, Lanzhou City University, Lanzhou 730070, China |
|
|
Abstract We report on the calculations of transition wavelengths and weighted oscillator strengths for 2s22p6-2s2p6np (4 ≤ n ≤ 20) electric dipole (E1) transitions of Cu19+ ion. The flexible atomic code (FAC) has been adopted for the calculations. Comparisons are made with the experimental data available, showing that the present results for 4 ≤ n ≤ 6 are more accurate than the previous calculated values. Furthermore, combining the quantum defect theory (QDT) with the transition energies of 2s22p6-2s2p6np, the quantum defects for 2s2p6np Rydberg series of Cu19+ ion are determined. In addition, the energies of any highly excited states (n > 20) for this series can be reliably predicted using the QDT and the given quantum defects. The ionization energies for Cu19+ and Cu20+ ions are also calculated and they excellently accord with previous experimental and calculated values.
|
Received: 21 November 2010
Revised: 19 July 2011
Accepted manuscript online:
|
PACS:
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
95.30.Ky
|
(Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074176 and 11064007). |
Cite this article:
Zhang Zheng-Rong(张正荣), Cheng Xin-Lu(程新路), Liu Zi-Jiang(刘子江), Yang Jian-Hui(杨建会), and Li Hui-Fang(李慧芳) Theoretical study on 2s2p6np Rydberg states of Cu19+ ion 2012 Chin. Phys. B 21 013101
|
[1] |
Ma D X, Zheng N W and Lin X 2003 Spectrochim. Acta B 58 1625
|
[2] |
Zhong J Y, Zhang J, Zhao G and Lu X 2004 Chinese Astronomy and Astrophysics 28 264
|
[3] |
Bhatia A K and Doschek G A 2003 At. Data Nucl. Data Tables 85 1
|
[4] |
Gupta G P, Deb N C and Msezane A Z 1999 At. Data Nucl. Data Tables 71 103
|
[5] |
JupÉn C, LitzÉn U and Träbcrt E 1996 Phys. Lett. A 214 273
|
[6] |
Dong C Z, Xie L Y, Fritzsche S and Kato T 2003 Instrum. Methods Phys. Res. B 205 87
|
[7] |
Zhang J Y, Zheng Z J, Yang G H, Yang J M, Ding Y N, Wei M X and Li J 2006 High Power Laser and Particle Beams 18 1375 (in Chinese)
|
[8] |
Aggarwal K M, Keenan F P, Kato T and Murakami I 2006 A;&A 460 331
|
[9] |
Duan B, Bari M A, Zhong J Y, Yan J, Li Y M and Zhang J 2008 A;&A 488 1155
|
[10] |
Fournier K B, Faenov A Y, Pikuz T A, Skobelev I Y, Flora F, Bollanti S, di Lazzaro P, Murra D, Grilli A, Reale A, Reale L, Tomassetti G, Ritucci A, Bellucci I, Martellucci S and Petrocelli G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 3347
|
[11] |
Fournier K B, Faenov A Y, Pikuz T A, Skobelev I Y, Flora F, Bollanti S, di Lazzaro P, Murra D, Grilli A, Reale A, Reale L, Tomassetti G, Ritucci A, Bellucci I, Martellucci S and Petrocelli G, Belyaev V S, Vinogradov V I, Kyrilov A S and Matafonov A P 2003 J. Quant. Spectrosc. Radiat. Transfer. 81 167
|
[12] |
Fournier K B, Faenov A Y, Pikuz T A, Skobelev I Y, Belyaev V S, Vinogradov V I, Kyrilov A S, Matafonov A P, Bellucci I, Martellucci S, Petrocelli G, Auguste T,Hulin S, Monot P and Oliverira P D 2003 Phys. Rev. E 67 016402
|
[13] |
Ecuvillon A, Israelian G, Santos N C, Mayor M, Villar V and Bihain G 2004 A;&A 426 619
|
[14] |
Bihain G, Israelian G, Rebolo R, Bonifacio P and Molaro P 2004 A;&A 423 777
|
[15] |
Gu M F 2003 Astrophys. J. 582 1241
|
[16] |
Gu M F 2003 Astrophys. J. 589 1085
|
[17] |
Gu M F 2003 Astrophys. J. 590 1131
|
[18] |
Wang Z W, Liu Y, Hu M H, Li X R and Wang Y N 2008 Chin. Phys. B 17 2909
|
[19] |
Klapisch M 1971 Comput.Phys.Commun. 2 239
|
[20] |
Klapisch M, Schwob J and Fraenkel B 1977 J. Opt. Soc. Am. B: Opt. Phys. 67 148
|
[21] |
Friedrich H 1991 Theoretical Atomic Physics (Berlin: Heidelberg) p. 193
|
[22] |
Fano U and Rau A P R 1986 Atomic Collision and Spectra (New York: Academic) p. 85
|
[23] |
Yan J, Zhang P H, Tong X M and Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese)
|
[24] |
Hinnov E, Suckewer S, Cohen S and Sato K 1982 Phy. Rev. A 25 2293
|
[25] |
Gordon H, Hobby M G and Peacock N J 1980 J. Phys. B: At. Mol. Phys. 13 1985
|
[26] |
Kelly R L 1987 J. Phys. Chem. Ref. Data Suppl. I 16 1206
|
[27] |
Shirai T, Sugar J, Musgrove A and Wiese W L 2000 J. Phys. Chem. Ref. Data Monograph. p. 404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|