Special Issue:
TOPICAL REVIEW — Statistical Physics and Complex Systems
|
TOPICAL REVIEW—Statistical Physics and Complex Systems |
Prev
Next
|
|
|
Level spacing statistics for two-dimensional massless Dirac billiards |
Huang Liang (黄亮)a b, Xu Hong-Ya (徐洪亚)a b, Lai Ying-Cheng (来颖诚)b c d, Celso Grebogid |
a Institute of Computational Physics and Complex Systems and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, China;
b School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA;
c Department of Physics, Arizona State University, Tempe, AZ 85287, USA;
d Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King's College, University of Aberdeen, UK |
|
|
Abstract Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The searching for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting field of quantum chaos. In this short review, we shall go over recent efforts of extending the understanding of quantum chaos to relativistic cases. We shall focus on the level spacing statistics for two-dimensional massless Dirac billiards, i.e., particles confined in a closed region. We shall discuss the works for both the particle described by the massless Dirac equation (orWeyl equation) and the quasiparticle from graphene. Although the equations are the same, the boundary conditions are typically different, rendering distinct level spacing statistics.
|
Received: 05 March 2014
Revised: 22 May 2014
Accepted manuscript online:
|
PACS:
|
05.45.Mt
|
(Quantum chaos; semiclassical methods)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
73.22.Dj
|
(Single particle states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005053, 11135001, and 11375074), the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0095), and the Office of Naval Research (Grant No. N00014-08-1-0627). |
Corresponding Authors:
Huang Liang
E-mail: huangl@lzu.edu.cn
|
About author: 05.45.Mt; 03.65.Pm; 73.22.Dj |
Cite this article:
Huang Liang (黄亮), Xu Hong-Ya (徐洪亚), Lai Ying-Cheng (来颖诚), Celso Grebogi Level spacing statistics for two-dimensional massless Dirac billiards 2014 Chin. Phys. B 23 070507
|
[1] |
Stöckmann H J 1999 Quantum Chaos: An Introduction (New York: Cambridge University Press)
|
[2] |
Gutzwiller M 1990 Chaos in Classical and Quantum Mechanics (Berlin: Springer)
|
[3] |
Haake F 2010 Quantum Signatures of Chaos (Springer)
|
[4] |
Bohigas G and Giannoni M J 1984 Mathematical and Computational Methods in Nuclear Physics, Lecture Notes in Physics, Vol. 209 (Berlin: Springer)
|
[5] |
Bohigas G, Giannoni M J and Schmit C 1984 Phys. Rev. Lett. 52 1
|
[6] |
Berry M V 1985 Proc. R. Soc. London A 400 229
|
[7] |
Weidenmüller H A and Mitchell G E 2009 Rev. Mod. Phys. 81 539
|
[8] |
A requirement for the applicability of random-matrix theory is that the system possess no geometric symmetry.
|
[9] |
Stoffregen U, Stein J, Stöckmann H J, Kuś M and Haake F 1995 Phys. Rev. Lett. 74 2666
|
[10] |
So P, Anlage S M, Ott E and Oerter R N 1995 Phys. Rev. Lett. 74 2662
|
[11] |
Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
|
[12] |
Castro N A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[13] |
Peres N M R 2010 Rev. Mod. Phys. 82 2673
|
[14] |
Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[15] |
Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[16] |
Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
|
[17] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[18] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[19] |
Wurm J, Rycerz A, Adagideli I, Wimmer M, Richter K and Baranger H U 2009 Phys. Rev. Lett. 102 056806
|
[20] |
Huang L, Lai Y C, Ferry D K, Goodnick S M and Akis R 2009 Phys. Rev. Lett. 103 054101
|
[21] |
Xu H Y, Huang L, Lai Y C and Grebogi C 2013 Phys. Rev. Lett. 110 064102
|
[22] |
Yang R, Huang L, Lai Y C and Grebogi C 2011 Europhys. Lett. 94 40004
|
[23] |
Ying L, Huang L, Lai Y C and Grebogi C 2012 Phys. Rev. B 85 245448
|
[24] |
Yang R, Huang L, Lai Y C and Pecora L M 2012 Appl. Phys. Lett. 100 093105
|
[25] |
Yang R, Huang L, Lai Y C, Grebogi C and Pecora L M 2013 Chaos 23 013125
|
[26] |
Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530
|
[27] |
Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356
|
[28] |
Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T and Ensslin K 2008 Nano Lett. 8 2378
|
[29] |
Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L and Lü L 2009 Acta Phys. Sin. 58 5726 (in Chinese)
|
[30] |
Chen M, Fu Z G, Peng J P, Zheng F, Zhang H M, Feng X, Chang C Z, He K, Wang L, Zhang P, Ma X and Xue Q K 2013 arXiv:1312.4757v1[cond-mat.mes-hall]
|
[31] |
Berry M V and Mondragon R J 1987 Proc. R. Soc. London, Ser. A 412 53
|
[32] |
Neutrinos have a minuscule, but nonzero mass. See Karagiorgi G, Aguilar-Arevalo A, Conrad J M, Shaevitz M H, Whisnant K, Sorel M and Barger V 2007 Phys. Rev. D 75 013011
|
[33] |
Phatak S C, Pal S and Biswas D 1995 Phys. Rev. E 52 1333
|
[34] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[35] |
Akhmerov A R and Beenakker C W J 2007 Phys. Rev. Lett. 98 157003
|
[36] |
Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
|
[37] |
Garcia-Pomar J L, Cortijo A and Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801
|
[38] |
Berry M V and Tabor M 1977 Proc. Roy. Soc. London, Ser. A 356 375
|
[39] |
Mehta M L 1967 Random Matrices (New York: Academic)
|
[40] |
Bohr A and Mottelson B R 1969 Nuclear Structure, Vol. 1 (New York: Benjamin) Appendix 2C, pp. 294-301
|
[41] |
Here we do not consider GSE since it is irrelevant to our studies.
|
[42] |
Dyson F J and Mehta M L 1963 J. Math. Phys. 4 701
|
[43] |
Bohigas O and Giannoni M J 1975 Ann. Phys. 89 393
|
[44] |
Liu B, Zhang G C, Ding L, Dai J H and Zhang H J 1999 Phys. Lett. A 260 406
|
[45] |
Hasegawa H, Mikeska H J and Frahm H 1988 Phys. Rev. A 38 395
|
[46] |
Li B W, Robnik M and Hu B 1998 Phys. Rev. E 57 4095
|
[47] |
Ni X, Huang L, Ying L and Lai Y C 2013 Phys. Rev. B 87 224304
|
[48] |
Ni X, Huang L, Lai Y C and Grebogi C 2012 Phys. Rev. E 86 016702
|
[49] |
Ni X, Huang L, Lai Y C and Pecora LM2012 Europhys. Lett. 98 50007
|
[50] |
Huang L, Lai Y C and Grebogi C 2011 Chaos 21 013102
|
[51] |
Saito R, Dresselhaus G and Dresselhaus M S 2000 Phys. Rev. B 61 2981
|
[52] |
Rycerz A, Tworzydło J and Beenakker C W J 2007 Nat. Phys. 3 172
|
[53] |
Cheianov V V, Fal'ko V and Altshuler B L 2007 Science 315 1252
|
[54] |
Garcia-Pomar J L, Cortijo A and Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801
|
[55] |
Libisch F, Stampfer C and Burgdörfer J 2009 Phys. Rev. B 79 115423
|
[56] |
Amanatidis I and Evangelou S N 2009 Phys. Rev. B 79 205420
|
[57] |
Amanatidis H, Kleftogiannis I, Katsanos D E and Evangelou S N 2013 arXiv:1302.2470 [cond-mat.dis-nn]
|
[58] |
Rycerz A 2012 Phys. Rev. B 85 245424
|
[59] |
Reich S, Maultzsch J, Thomsen C and Ordejon P 2002 Phys. Rev. B 66 035412
|
[60] |
Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
|
[61] |
Lanczos C 1950 J. Res. Natl. Bur. Stand. 45 255
|
[62] |
Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D and Ishigami M 2008 Nat. Phys. 4 377
|
[63] |
Huang L, Lai Y C and Grebogi C 2010 Phys. Rev. E 81 055203
|
[64] |
Berry M V and Robnik M 1986 J. Phys. A: Math. Gen. 19 649
|
[65] |
The magnetic field can be scaled down for larger confinements to yield similar effects.
|
[66] |
Brey L and Fertig H A 2006 Phys. Rev. B 73 235411
|
[67] |
Suzuura H and Ando T 2002 Phys. Rev. Lett. 89 266603
|
[68] |
Robnik M and Berry M V 1986 J. Phys. A: Math. Gen. 19 669
|
[69] |
Robnik M 1986 Quantum Chaos and Statistical Nuclear Physics, Lecture Notes in Physcs, Vol. 263 (Berlin: Springer-Verlag)
|
[70] |
Alhassid Y and Lewenkopf C H 1995 Phys. Rev. Lett. 75 3922
|
[71] |
Robnik M and Berry M V 1985 J. Phys. A 18 1361
|
[72] |
Robnik M 1986 Nonlinear Phenomena and Chaos, Malvern Physics Series (Bristol: Adam-Hilger)
|
[73] |
Robnik M 1986 J. Phys. A 19 3619
|
[74] |
Wimmer M, Akhmerov A R and Guinea F 2010 Phys. Rev. B 82 045409
|
[75] |
Bell R J and Dean P 1970 Discuss. Faraday Soc. 50 55
|
[76] |
Bell R J 1972 Rep. Prog. Phys. 35 1315
|
[77] |
Fujita M, Wakabayashi K, Nakada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
|
[78] |
Wimmer M, Adagideli I, Berber S and Tománek D and Richter K 2008 Phys. Rev. Lett. 100 177207
|
[79] |
Nomura K, Koshino M and Ryu S 2007 Phys. Rev. Lett. 99 146806
|
[80] |
Ryu S, Mudry C, Obuse H and Furusaki A 2007 Phys. Rev. Lett. 99 116601
|
[81] |
Ostrovsky P M, Gornyi I V and Mirlin A D 2007 Phys. Rev. Lett. 98 256801
|
[82] |
Bena C 2008 Phys. Rev. Lett. 100 076601
|
[83] |
Brihuega I, Mallet P, Bena C, Bose S, Michaelis C, Vitali L, Varchon F, Magaud L, Kern K and Veuillen J Y 2008 Phys. Rev. Lett. 101 206802
|
[84] |
Ando T, Nakanishi T and Saito R 1998 J. Phys. Soc. Jpn. 67 2857
|
[85] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D and Geim A K 2006 Phys. Rev. Lett. 97 016801
|
[86] |
McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T and Altshuler B L 2006 Phys. Rev. Lett. 97 146805
|
[87] |
Morpurgo A F and Guinea F 2006 Phys. Rev. Lett. 97 196804
|
[88] |
Wu X, Li X, Song Z, Berger C and de Heer W A 2007 Phys. Rev. Lett. 98 136801
|
[89] |
Kharitonov M Y and Efetov K B 2008 Phys. Rev. B 78 033404
|
[90] |
Klein D J 1994 Chem. Phys. Lett. 217 261
|
[91] |
Wakabayashi K, Okada S, Tomita R, Fujimoto S and Natsume Y 2010 J. Phys. Soc. Jpn. 79 034706
|
[92] |
Lewenkopf C H, Mucciolo E R, Castro Neto A H 2008 Phys. Rev. B 77 081410
|
[93] |
Mucciolo E R, Castro Neto A H and Lewenkopf C H 2009 Phys. Rev. B 79 075407
|
[94] |
Carmier P and Ullmo D 2008 Phys. Rev. B 77 245413
|
[95] |
Carmier P, Lewenkopf C and Ullmo D 2010 Phys. Rev. B 81 241406
|
[96] |
Rycerz A 2013 Phys. Rev. B 87 195431
|
[97] |
Ergün G 2012 Computational Complexity 2012 2549
|
[98] |
It should be noted that the representation here is different than the energy representation, in which the Hamiltonian is diagonalized and is real.
|
[99] |
Leyvraz F, Schmit C and Seligman T H 1996 J. Phys. A: Math. Gen. 29 L575
|
[100] |
Dembowski C, Gräf H D, Heine A, Rehfeld H, Richter A and Schmit C 2000 Phys. Rev. E 62 R4516
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|