Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070506    DOI: 10.1088/1674-1056/23/7/070506
GENERAL Prev   Next  

PC synchronization of a class of chaotic systems via event-triggered control

Luo Run-Zi (罗润梓)a, He Long-Min (何龙敏)b
a Department of Mathematics, Nanchang University, Nanchang 330031, China;
b Department of Mathematics, Shanghai University, Shanghai 200444, China
Abstract  The PC synchronization of a class of chaotic systems is investigated in this paper. The drive system is assumed to have only one state variable available. By constructing proper observers, some novel criteria for PC synchronization are proposed via event-triggered control scheme. The Lü system and Chen system are taken as examples to demonstrate the efficiency of the proposed approach.
Keywords:  chaotic system      state observer      event-triggered control  
Received:  29 October 2013      Revised:  20 January 2014      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11361043 and 61304161) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB201005).
Corresponding Authors:  Luo Run-Zi     E-mail:  luo_rz@163.com
About author:  05.45.Gg

Cite this article: 

Luo Run-Zi (罗润梓), He Long-Min (何龙敏) PC synchronization of a class of chaotic systems via event-triggered control 2014 Chin. Phys. B 23 070506

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Pourdehi S and Karimaghaee P 2012 Chaos 22 023145
[3] Kitajima H and Yoshihara T 2012 Physica D 241 1804
[4] Ahmadlou M and Adeli H 2012 Physica D 241 326
[5] Guo X Y and Li J M 2011 Chin. Phys. Lett. 28 120503
[6] Li G H 2007 Chaos Soliton. Fract. 32 1786
[7] Luo R Z, Wang Y L and Deng S C 2011 Chaos 21 043114
[8] Odibat Z M, Corson N, Aziz-Alaoui M A and Bertelle C 2010 Int. J. Bifurc. Chaos 20 81
[9] Peng C and Chen C 2008 Chaos Soliton. Fract. 37 598
[10] Zhao Y and Wang W 2009 Chaos Soliton. Fract. 41 60
[11] Chen C S 2011 Appl. Math. Comput. 217 10377
[12] Yu H T, Wang J, Deng B, Wei X L and Chen Y Y 2013 Chin. Phys. B 22 058701
[13] Liu J G 2013 Chin. Phys. B 22 060510
[14] Garcia E and Antsaklis P J 2013 IEEE Trans. Auto. Control 58 422
[15] Peng C and Yang T C 2013 Automatica 49 1326
[16] Yu H and Antsaklis P J 2013 Automatica 49 30
[17] Zhu H L and Zhang X B 2009 J. Inf. Comput. Sci. 4 033
[18] Farivar F, Shoorehdeli M A, Nekoui M A and Teshnehlab M 2012 Nonlinear Dyn. 67 1913
[19] Bai J, Yu Y G, Wang S and Song Y 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1921
[20] Koofigar H R, Sheikholeslam F and Hosseinnia S 2011 Chaos 21 043134
[21] Chen D, Zhang R, Sprott J C, Chen H and Ma X 2012 Chaos 22 023130
[22] Banerjee S, Jeeva S T S and Kurths J 2013 Chaos 23 013118
[23] Zhang K, Wang H and Fang H 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 317
[24] Asheghan M and Míguez J 2013 Chaos 23 023108
[25] Lü J and Chen G 2002 Int. J. Bifurc. Chaos 12 659
[26] Chen G and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465
[27] Lorenz E N 1963 J. Atmos. Sci. 20 130
[28] Lü J H, Chen G R, Cheng D Z and Celikovsky S 2002 Int. J. Bifurc. Chaos 12 2917
[29] Liu C, Liu T, Liu L and Liu K 2004 Chaos Soliton. Fract. 22 1031
[30] Sun Y J 2010 Phys. Lett. A 374 933
[31] Zhang Z Q, Shao H Y, Wang Z and Shen H 2012 Appl. Math. Comput. 218 7614
[32] Khalil H 2002 Nonlinear Sys. (Prentice Hall)
[33] Tallapragada P and Chopra N 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) 5377
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[11] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[12] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[13] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[14] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[15] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
No Suggested Reading articles found!