Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 065203    DOI: 10.1088/1674-1056/23/6/065203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Energy spectrum of multi-radiation of X-rays in a low energy Mather-type plasma focus device

Farzin M. Aghamir, Reza A. Behbahani
Department of Physics, University of Tehran, N. Kargar Ave., Tehran 143399, Iran
Abstract  The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-Kα and Cu-Kβ was around 0.14± 0.02 (J/Sr) and 0.04± 0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (> 15 keV) was around 0.12± 0.02 (J/Sr).
Keywords:  Mather-type plasma focus device      hard X-rays      multi-radiation      tube multiple voltage peaks      anomalous resistances  
Received:  27 October 2013      Revised:  11 January 2014      Accepted manuscript online: 
PACS:  52.58.Lq (Z-pinches, plasma focus, and other pinch devices)  
  52.59.Px (Hard X-ray sources)  
  52.70.La (X-ray and γ-ray measurements)  
  33.20.Rm (X-ray spectra)  
Corresponding Authors:  Farzin M. Aghamir     E-mail:  aghamir@ut.ac.ir

Cite this article: 

Farzin M. Aghamir, Reza A. Behbahani Energy spectrum of multi-radiation of X-rays in a low energy Mather-type plasma focus device 2014 Chin. Phys. B 23 065203

[1] Mohanty S R, Neog N K, Bhuyan H, Rout R K, Rawat R S and Lee P 2007 Jpn. J. Appl. Phys. 46 3039
[2] Wong C S, Choi P, Leong W S and Singh J 2002 Jpn. J. Appl. Phys. 41 3943
[3] Stygar W, Gerdin G, Venneri F and Mandrekas J 1982 Nucl. Fusion 22 1161
[4] Kelly H and Marquez A 1995 Meas. Sci. Technol. 6 400
[5] Patran A, Tan L C, Stoenescu D, Rafigue M S, Rawat R S, Springham S V, Tan T L, Lee P, Zakaullah M and Lee S 2005 Plasma Sources Sci. Technol. 14 549
[6] Wong D, Patran A, Tan T L, Rawat R S and Lee P 2004 IEEE Trans. Plasma Sci. 32 2227
[7] Rawat R S, Zhang T, Phua C B L, Then X Y, Chandra K A, Lin X, Patran A and Lee P 2004 Plasma Sources Sci. Technol. 13 569
[8] Neog N K, Mohanty S R and Hotta E 2006 J. Appl. Phys. 99 013302-1
[9] Neog N K, Mohanty S R and Borthakur T K 2008 Phys. Lett. A 372 2294
[10] Verma R, Roshan M V, Malik F, Lee P, Lee S, Springham S V, Tan T L, Krishnan M and Rawat R S 2008 Plasma Sources Sci. Technol. 17 04502
[11] Bortolotti A, Brzosko J S, Ingrosso I, Mezzetti F, Nardi V, Powell C and Robouch B V 1992 Nucl. Instrum. Method Phys. Res. B 63 473
[12] Neff W, Eberle J, Holz R, Lebert R and Richter F 1989 Proc. SPIE 1140, November 27, 1989, Paris, France, p. 13
[13] Lee P, Feng X, Zhang G X, Liu M H and Lee S 1997 Plasma Sources Sci. Technol. 6 343
[14] Mohanty S R, Sakamoto T, Kobayashi Y, Song I, Watanabe M, Kawamura T, Okino A, Horioka K and Hotta E 2006 Rev. Sci. Instrum. 77 043506-1
[15] Dysan N A 1990 X-rays in Atomic and Nuclear Physics (Cambridge: Cambridge University Press)
[16] Vaughan D 1986 X-ray Data Booklet (Berkeley: Lawrence Berkeley Laboratory)
[17] Zakaullah M and Woreley J 2000 J. Appl. Phys. 85 1251
[18] Ahmad S, Shafiq M, Zakaullah M and Waheed M 2006 Appl. Phys. Lett. 89 061503
[19] Zakaullah M, Alamgir K, Shafiq M, Hassan S M, Sharif M and Waheed M 2001 Appl. Phys. Lett. 78 877
[20] Shafiq M, Hussain S, Sharif M, Zakaullah M and Waheed A 2002 Phys. Lett. A 23 302
[21] Shafiq M, Hussain S, Zakaullah M and Waheed A 2003 Plasma Sources Sci. Technol. 12 199
[22] Hussain S, Zakaullah M, Ali S, Bhatti S H and Waheed A 2003 Phys. Lett. A 319 181
[23] Hussain S, Shafiq M, Ahmad R, Waheed A and Zakaullah M 2005 Plasma Sources Sci. Technol. 14 61
[24] Hussain S, Shafiq M and Zakaullah M 2010 Appl .Phys. Lett. 96 031501
[25] Fillipov N V, Fillipova T I, Karakin M A, Krauz V I, Tykshaev V P, Vinogradov V P, Bakulin Y P, Timfeev V V, Zinchehenko V F, Brzosko J R and Brzosko J S 1996 IEEE Trans. Plasma Sci. 24 1215
[26] Johnson D J 1974 Rev. Sci. Instrum. 45 191
[27] Michette A G and Buckley C J 1993 X-ray Science and Technology (Bristol: Institute of Physics Publishing) p. 249.
[28] Henke B L, Gullikson E M and Davis J C 1993 Atomic Data Nuclear Data Tables "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50 eV-30000 eV, Z=1-92" 54 pp. 181-342
[29] Lee S 2009 Appl. Phys. Lett. 95 151503
[30] www.intimal.edu.my/school/fas/UFLF
[31] Lee S and Saw S H 2008 Appl. Phys. Lett. 92 021503
[32] Bruzzone H 2001 Nukleonika 46 (supplement 1) 53
[33] Bernard A, Bruzzone H, Choi P, Chuaqui H, Gribkov V, Herrera J, Hirana K, Krejei A, Lee S, Luo C, Mezzetti F, Shadowski M, Schmidt H, Ware K, Wong C S and Zoita V 1998 J. Moscow Phys. Soc. 8 93
[34] Lee S 2010 Radiative Dense Plasma Focus Computation Pakage: RADPF: http://www.plasmafocus.net http://www.plasmafocus.net/IPFS/modelpackage/File1RADPF.htm http://www.plasmafocus.net/IPFS/modelpackage/File2Theory.pdf http://www.plasmafocus.net/IPFS/modelpackage/UPF.htm
[35] Lee S, Saw S H, Abdou A E and Torreblanca H 2010 J. Fusion Energy 30 277
[36] Behbahani R A and Aghamir F M 2011 J. Phys. Plasmas 18 103302
[37] Behbahani R A and Aghamir F M 2012 J. Appl. Phys. 111 043304
[38] Lee S, Saw S H, Rawat R S, Lee P, Talebitaher A, Abdou A E, Chong P L, Roy F A, Singh A, Wong D and Devi K 2011 IEEE Trans. Plasma Sci. 39 3196
[1] Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum
Shi-Jia Chen(陈诗佳), Yan-Yun Ma(马燕云), Fu-Yuan Wu(吴福源), Xiao-Hu Yang(杨晓虎), Yun Yuan(袁赟), Ye Cui(崔野), and Rafael Ramis. Chin. Phys. B, 2021, 30(11): 115201.
[2] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[3] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[4] Analytical studies on the evolution processes of rarefied deuterium plasma shell Z-pinch by PIC and MHD simulations
Cheng Ning(宁成), Xiao-Qiang Zhang(张小强), Yang Zhang(张扬), Shun-Kai Sun(孙顺凯), Chuang Xue(薛创), Zhi-Xing Feng(丰志兴), Bai-Wen Li(李百文). Chin. Phys. B, 2018, 27(2): 025207.
[5] Magneto-Rayleigh–Taylor instability in compressible Z-pinch liner plasmas
Xue Yang(杨学), De-Long Xiao(肖德龙), Ning Ding(丁宁), Jie Liu(刘杰). Chin. Phys. B, 2017, 26(7): 075202.
[6] End-on x-ray backlighting experiments for axial diagnostics of wire-array Z-pinch plasma on PPG-1
Shen Zhao(赵屾), Xinlei Zhu(朱鑫磊), Huantong Shi(石桓通), Xiaobing Zou(邹晓兵), Xinxin Wang(王新新). Chin. Phys. B, 2017, 26(1): 015206.
[7] Determining resistance of X-pinch plasma
Zhao Shen (赵屾), Xue Chuang (薛创), Zhu Xin-Lei (朱鑫磊), Zhang Ran (张然), Luo Hai-Yun (罗海云), Zou Xiao-Bing (邹晓兵), Wang Xin-Xin (王新新), Ning Cheng (宁成), Ding Ning (丁宁), Shu Xiao-Jian (束小建). Chin. Phys. B, 2013, 22(4): 045205.
[8] Spatially-resolved spectroscopic diagnosing of aluminum wire array Z-pinch plasmas on QiangGuang-I facility
Ye Fan (叶凡), Li Zheng-Hong (李正宏), Qin Yi (秦义), Jiang Shu-Qing (蒋树庆), Xue Fei-Biao (薛飞彪), Yang Jian-Lun (杨建伦), Xu Rong-Kun (徐荣昆), Jin Yong-Jie (金永杰). Chin. Phys. B, 2010, 19(7): 075204.
[9] X-ray backlighting of two-wire Z-pinch plasma using X-pinch
Zhao Tong (赵彤), Zou Xiao-Bing (邹晓兵), Zhang Ran (张然), Wang Xin-Xin (王新新). Chin. Phys. B, 2010, 19(7): 075205.
[10] Stability analysis of viscous Z-pinch plasma with a sheared axial flow
Zhang Yang(张扬) and Ding Ning(丁宁). Chin. Phys. B, 2008, 17(8): 2994-3002.
[11] Experimental study on imploding characteristics of wire-array Z pinches on Qiangguang-1 facility
Wang Zhen(王真), Xu Rong-Kun(徐荣昆), Yang Jian-Lun(杨建伦), Hua Xin-Sheng(华欣生), Li Lin-Bo(李林波), Xu Ze-Ping(许泽平), Ning Jia-Min(宁家敏), and Song Feng-Jun(宋凤军). Chin. Phys. B, 2007, 16(3): 772-777.
[12] Effect of longitudinal applied magnetic field on the self-pinched critical current in intense electron beam diode
Liu Guo-Zhi (刘国治), Huang Wen-Hua (黄文华), Shao Hao (邵浩), Xiao Ren-Zhen (肖仁珍). Chin. Phys. B, 2006, 15(3): 600-603.
[13] Simulation for double shell pinch
Wang Gang-Hua (王刚华), Hu Xi-Jing (胡熙静), Sun Cheng-Wei (孙承纬). Chin. Phys. B, 2004, 13(12): 2105-2108.
[14] Numerical study of the scaling of the maximum kinetic energy per unit length for imploding Z-pinch liner
Zeng Zheng-Zhong (曾正中), Qiu Ai-Ci (邱爱慈). Chin. Phys. B, 2004, 13(2): 201-204.
[15] TIME-AVERAGED SPONTANEOUS POWER RADIATION IN PLASMA FOCUS
CAI SHI-DONG (蔡诗东), S.LEE (李星), HU JIAN-LONG (胡建龙), CHEN YAN-PING (陈雁萍). Chin. Phys. B, 1997, 6(9): 690-696.
No Suggested Reading articles found!